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Supplementary text S1: Hamilton’s rule and Price’s covariance formalism

We recall here how Hamilton’s rule can be derived using Price’s covariance formalism [1,2].

A. Price equation

Consider a population composed of groups, indexed by g, themselves composed of individuals,

indexed by i. An individual i can either be a producer, pi = 1, or a non-producer, pi = 0. Initially,

a group g contains a fraction xg of the total population and has a proportion pg of producers; after

a given amount of time, the group size is multiplied by a factor wg, which is assumed to depend

only on pg (and not on the absolute size of the groups as it could more generally do).

The so-called Price equation can be written at two levels. At the population level, it gives the

overall change in the proportion of producers �p̄ = p̄

0� p̄, where p̄ =
P

g xgpg represents the initial

proportion, and p̄

0 =
P

x

0
gp

0
g, with p

0
g = pg + �pg and x

0
g = xgwg/

P
h xhwh, the final proportion

(an implicit assumption here is that we are only interested in a mixture of all the groups after a

fixed period of time defining a “final” time; otherwise quantities other than the global mean could

also be of interest). From these definitions, the following identity, known as the Price equation,

follows:

hwgi�p̄ = Cov(wg, pg) + hwg�pgi. (1)

Here, averages and covariances are taken with weights depending on the initial relative sizes of the

groups: for any quantities ag and bg defined at the group level, hagi =
P

g xgag and Cov(ag, bg) =

hagbgi � hagihbgi. The second term in Eq. (1) involves �pg, the change in proportion of producers

within group g, which can be expressed in terms of a Price equation at the group level:

wg�pg = Covg(wi, pi). (2)

Here, wi corresponds to the multiplicative factor by which producers (if pi = 1) or non-producers

(if pi = 0) are multiplied (at this level, xi = 1 and �pi = 0 since the unit is an individual and no

conversion between producer and non-producer is assumed). Covg(wi, pi) = hwipiig � hwiighpiig
where the subscript g indicates that averages are taken for individuals i belonging to the group g;

in particular, we have by definition hwiig = wg and hpiig = pg.
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B. Covariance and regression

Given a set of pairs (pg, wg) with weights xg we can always write

Cov(wg, pg) = �(wg, pg)Var(pg) (3)

where Var(pg) = Cov(pg, pg) = hp2

gi � hpgi2 is the variance of pg and �(wg, pg) corresponds to the

regression coe�cient of wg against pg. �(pg, wg) can also be interpreted as the value of � which

minimizes, together with the other regression coe�cient ↵, the residual sum

R

2 = h(wg � (↵ + �pg))2i =
X

g

xg(wg � ↵� �pg)2. (4)

Graphically, �(pg, wg) is therefore the slope of the best linear interpolation, in the mean-square

sense (using weights xg) of the data points (pg, wg) (see Fig. 3 of main text).

Similarly, we can write

Covg(wi, pi) = �g(wi, pi)Varg(pi). (5)

With these subtitutions, the condition �p̄ > 0 is equivalent to

�(wg, pg)Var(pg) + h�g(wi, pi)Varg(pi)i > 0. (6)

C. From Price to Hamilton

If �g(wi, pi) is independent of g, corresponding to an intrinsic individual cost independent of

the nature of the group g to which an individual belongs, Eq. (6) can be rewritten

�(wg, pg)r + �g(wi, pi) > 0. (7)

where

r =
Var(pg)
hVarg(pi)i

(8)

is a purely “geometrical” parameter, that depends only on the initial composition of the groups.

If we consider for instance groups of equal size with a proportion pg of producers in each group,

we have pi = 1 with probability pg and pi = 0 with probability 1 � pg, so that hpm
i ig = pg for all

m, and in particular Varg(pi) = pg � p

2

g. In such a case,

r =
hp2

gi � hpgi2

hpgi � hp2

gi
. (9)
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D. Linear models

Eq. (7), known as Hamilton’s rule, is most easily interpretable when the regression coe�cients

�(wg, pg) and �g(wi, pi) are independent of the distribution of the pg’s. In the model introduced in

Box 1, it is thus assumed that there is a fixed production cost per individual that is independent

from group properties. For this model, we can write the linear relation

wi = a + kpg � cpi, (10)

where a + kpg is the multiplicative factor for non-producers (pi = 0) and a + kpg � c for producers

(pi = 1) when they are in a group with a proportion pg of producers. We have then �g(wi, pi) ' �c

(see next paragraph) and, since averaging within a group leads to wg = a + (k � c)pg, we have

�(wg, pg) = k � c. By introducing b ⌘ k � c, we thus obtain Hamilton’s rule under the form

br � c > 0, with r given by Eq. (8).

When deriving these formulas, pi and pg should not be treated as independent variables (for

instance, if pg = 0, then necessarily pi = 0). Introducing pg�i, the fraction of producers in the

subgroup of size ng � 1 where i is excluded (ng representing the total size of group g), we have

pg = pg�i(ng � 1)/ng + pi/ng. Therefore, wi = 1 + k(ng � 1)/ngpg�i + (k/ng � c)pi where now,

conditionally on pg, the variables pg�i and pi are uncorrelated. We thus get �g(wi, pi) = �c+k/ng,

which simplifies to �g(wi, pi) ' �c when the size of the group ng is large.

E. Non-linearities and interpretation of b

In general, the relation between wg and pg is non linear and the “benefit” b = �(wg, pg) depends

on the distribution into groups (see Fig. 3 for an illustration). Formally, Eq. (7) still holds but

since both b and r change when the composition of the group changes, and since the change of

b = �(wg, pg) cannot be from the current values of b and c only, the relation cannot indicate how

the direction of selection is a↵ected when the system is perturbed. Only when operating in a regime

where wg varies linearly with pg can a single number, b, provide a su�cient characterization.

Note also that, even in the linear case, the notion of benefit that enters in Hamilton’s rule is

that of a “di↵erential benefit” that addresses only changes in the relative proportion of producers

and non-producers: if the relation wg = a + bpg is changed to wg = a

0 + bpg with a

0
> a, there

is an (absolute) “benefit” in the sense that the population globally improves its growth, but no

(di↵erential) “benefit”, in the sense of Hamilton’s rule, since the ratio between producers and

non-producers is not a↵ected. This situation is illustrated with our system in Fig. 3.
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Supplementary text S2: A model for the dynamics of producer and nonproducer strains

We introduce here a simple model for the dynamics of the synthetic producer and nonpro-

ducer strains. The population dynamics depend on the concentration of autoinducer, AI, which is

assumed to modulate the growth rate between s

min

and s

max

following

s(AI) = s

min

+ (s
max

� s

min

)
✓

AI

AI + KM

◆
, (11)

where KM is the concentration of autoinducer at which half-maximal response occurs. Assuming

a logistic growth with a common carrying capacity K and an autoinducer dependent growth rate,

the dynamics of producers is described by

d[P ]
dt

= s(AI) P

✓
1� P + NP

K

◆
, (12)

and the dynamics of producers by

d[NP ]
dt

=  s(AI) NP

✓
1� P + NP

K

◆
, (13)

where  > 1 represents the relative advantage of nonproducers. Finally, the autoinducer production

rate is taken to be proportional to number of producers

d[AI]
dt

= ↵P. (14)

This model is simply focused on the growth dynamics of producers and nonproducers and notably

does not explicitly incorporate on/o↵ rates, transport rates, transcription/translation/degradation

rates. When this model was simulated using parameter values estimated from experimental data

and initial conditions corresponding to our experimental conditions, the simulation qualitatively

reproduced the main experimental observations [3]: �p̄ was greater than zero while �pg was

less than zero for all g (Supplementary Figure S1). The model also qualitatively reproduces the

dependence of growth of producers and nonproducers on pg (Supplementary Figure S2).
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Supplementary figures

Figure S1: Simpsons paradox in a simulated population of producers and nonproducers

The model described in Supplementary Text S2 was numerically integrated in Matlab using

parameters K = 4 ⇥ 109 cells/ml, KM = 3 µM, s

max

= 0.0075 min�1, s

min

= s

max

/10,  = 1.05,

↵ = 3 ⇥ 10�16 mmol cell�1 min�1. Ten mixed subpopulations, each initially containing 4 ⇥ 107

cells/ml (representing the 100-fold dilution made at the beginning of an experiment with living

cells), were formed with pg = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95}. This distribution is the

same as that used in our experiments with living cells. Since the amount of autoinducer in a

saturated culture of pure producers is approximately 30 µM, the initial autoinducer concentration

in each subpopulation was 30 ⇥ (pg/100) µM. The system was simulated for 780 min (13 hours),

corresponding to the length (12 to 13 hours) of a typical experiment with living cells. The initial

producer proportion pg of each subpopulation is plotted as a magenta circle and a black line segment

connects pg to the final producer proportion pg. In agreement with experiments with living cells,

Simpsons paradox is observed in the simulation, since �pg  0 for all g, but �p̄ > 0 globally.
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Figure S2: Growth of producers and nonproducers as a function of initial producer proportion

wNP (black) is the same as w� of Box 1. wP (green) is the same as w

+

of Box 1. wg (magenta)

is the growth of the subpopulation composed of pg producers and (1� pg) nonproducers.

(A) Representative sample for experimental data, with lines representing fits from linear regression.

(B) Simulated system of Supplementary Figure S1.


