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I. Supplemental Experimental Procedures 
 
A. Multiple Sequence Alignments 
 
For the S1A family, only sequences consisting of a single protease domain were included.  Positions were 
truncated to the structure of rat trypsin (PDB 3TGI), yielding a final alignment of 1470 sequences and 223 
positions that includes the digestive enzymes (e.g. trypsin, chymotrypsin, elastase), the immune cell 
proteases (tryptases, chymases, kallikreins, and granzymes), the coagulation enzymes (e.g. thrombin, factor 
X), the snake venom proteases, and the haptoglobins, non-catalytic members of the family that have evolved 
to bind free hemoglobin (Kurosky et al., 1980).  Sequences were annotated with regard to catalytic 
specificity through examination of sequence file headers and literature survey, and for the purposes of this 
work, were binned into the following categories: TtrypsinU, TchymotrypsinU, TkallikreinsU, TtryptasesU, 
TchymasesU, and TgranzymesU.  The granzymes were further subdivided into the major types occurring in 
the alignment: TaU, TkU, TbU, and TmU.  All sequences that did not unambiguously fall into these categories 
were declared TNAU for not annotated. 

For the PDZ domain family, the alignment consisted of 240 sequences and 92 positions after truncation to 
the structure of the third PDZ domain of rat PSD95 (PDB 1BE9).  For the PAS family, the alignment 
consisted of 1104 sequences and 123 positions after truncation to the structure of A. sativa LOV2 (PDB 
2V0W).  For SH2, 582 sequences and 79 positions after truncation to the Syp SH2 domain (PDB 1AYA).  
For SH3, 492 sequences and 52 positions after truncation to the Abl SH3 domain (PDB 2ABL).  

B. Correlation Analysis 
 
This section provides a short summary of the calculations used for the statistical coupling analysis.  The 
supplementary discussion (section II) provides more detail, rationale, and further discussion regarding these 
methods. 
 
1. Positional conservation:  The conservation of an amino acid a  at position i  in a multiple sequence 
alignment is defined by Di

(a) , the divergence (or relative entropy) of the observed frequency of a  at i  

( fi
(a) ) from the background frequency of a  in all proteins ( q(a) )(Cover and Thomas, 2006): 

Di
(a) � fi

(a) ln
fi

(a)

q(a) � 1� fi
(a)� �ln1� fi

(a)

1� q(a) . 
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Di
(a )  is a non-linear function of fi

(a ) that rises more and more steeply as fi
(a ) approaches one.  As a 

practical consequence, for all but the least conserved positions, the overall conservation of all amino acids at 
each position i  is well approximated by Di

(ai ) , the conservation of ai , the most prevalent amino acid at that 
position (Fig. S1).  We make use of this simplified Tbinary approximationU below. 

2. SCA matrix:  The basic principle of the SCA correlation matrix, c C ij
ab  is to weight the frequency-based 

correlations between positions i  and j , Cij
ab � f ij

ab� � � f i
a� � f j

b� �, by a functional of their positional 

conservations Di
(a )  and D j

(b ) : 

c C ij
ab � � Di

a� �� �� Dj
b� �� �Cij

ab  

Thus c C ij
ab  is a measure of the significance of observed correlations as judged by the conservation of the 

amino acids under consideration.  Following earlier work, the weighting functions are chosen here to be 
gradients of positional conservation: � � �D �f .  The position-by-position SCA correlation matrix �Cij  
(Fig. 1D) is constructed by invoking the binary approximation of the alignment: 
c C ij � � Di

(ai )� �� Dj
(a j )� �Cij

ai a j .  The expressions for Di
(a) , c C ij

ab , and �Cij  represent updated versions of 
measures of conservation and correlation reported previously for the SCA method (Lockless and 
Ranganathan, 1999; Suel et al., 2003). 

3. Spectral cleaning: Due to statistical and historical noise, most correlations reported by ijC~  are not 

functionally significant. A spectral decomposition of ijC~  provides a way to partially sort out the different 

contributions to the correlations. The spectrum of ijC~  is composed of 223 eigenvalues ���1 �� � �223 , the 
lowest 218 of which can be attributed to statistical noise since randomized alignments retaining the same 
size and amino acid propensities at sites show eigenvalues of similar magnitude (Fig. S2A).   Thus, only the 
top 5 modes of ijC~  are interpreted.  A similar approach motivated by random matrix theory (Wigner, 1967) 
is used in finance for defining significant correlations of stock performance based on limited time series of 
sampling returns (Bouchaud and Potters, 2004; Plerou et al., 2002). 

Among the significant modes, the first mode has a distinctive property: it describes a "coherent" correlation 
of all positions.  This is evident analytically since the first mode makes the dominant contribution to ijC~  

(Fig. S2A).  As a first order approximation, ijC~  can be written as c C ij
(1) � SiS j Sk

k
�  with ��

j
iji CS ~

; the 

matrix )1(~
ijC  has only one non-zero mode �1

(1) � Si
2

i
� Si

i
� , with an associated eigenvector having for 

components Si Sk
2

k
�

��

��
��

#�

%�
$�

1/ 2

.  In other words, for SCA matrices with a dominant first mode, the first 

eigenvector should just report the net contribution of each position to the total correlation.   Indeed, the first 
eigenvector of ijC~  is well approximated by this equation (Fig. S2B), and �1 � 28.6 , the first eigenvalue of 

ijC~  is well approximated by �1
(1) � 27.8.  Since each position contributes with the same sign to this first 

eigenvector, it corresponds to a coherent mode.  Similar to how global fluctuations in the economy 
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coherently drive correlations between all stocks, historical noise is expected to produce coherent correlations 
between sequence positions (see example in Section II, the Supplemental Discussion). 

4. Sector identification: The three sectors in the serine protease family are identified by examining the 
intermediate modes 2 to 5, and best visualized by the second and fourth eigenvectors ( 2  and 4 ) of 

ijC~ (Fig. S2-S3).  The bra-ket notation is such that k  denotes the k theigenvector and i k  the weight for 
position i  along eigenvector k .   The red sector is defined as the positions i  for which i 2 �   and 
i 2 � i 4 , the blue sector as those for which i 2 � � and i 2 � � i 4 , and the green sector as 

those for which i 4 �   and i 4 � i 2  (Fig. S3F).  The significance threshold  � 0.05 is defined by 
examining eigenvector weights for 100 trials of randomizing the alignment (Fig. S2C-E).  A few other 
positions show negative weights in i 4  that are less well grouped.  Unlike the other groups, these positions 
are further subdivided along the fifth eigenvector and are unlikely to represent a meaningful sector (Figs. S3-
S4). 

In general, a sector need not be simply associated with one eigenvector; instead, it could be defined by a 
linear combination of different eigenvectors. Statistical methods beyond spectral analysis may thus be more 
appropriate to define sectors.  For example, techniques such as independent component analysis (ICA 
(Hyvarinen et al., 2001; Stone, 2004)) may be valuable.  Preliminary analysis shows that ICA identifies the 
same three sectors in the S1A family as independent components (not shown).  In addition, when strongly 
non-uniform distributions of sequences occur in an alignment, some of the top eigenvectors could represent 
Tpseudo-sectorsU (see Fig. S4 and Section II, the Supplemental Discussion); systematic elimination of these 
features of historical noise will require methods beyond those presented here. 

5. The cleaned correlation matrix.  The correlation matrix corresponding to the significant modes 2 to 4 of 

ijC~  can formally be written c C '� �k k k
k� 2

4

� .  Figure 1E shows the correlations in c C '  for the 65 identified 

sector positions, with positions of the blue, green, and red sectors ordered by increasing values of i 2 , 
decreasing values of i 4 , and decreasing values of i 2 , respectively.  As described in the Section II, the 
Supplemental Discussion, some negative correlations occur in c C '  that are artifacts of the cleaning method 
and are ignored (Fig. S5). 

C. Protein Expression and Purification 
 
Proteases were expressed in a Saccharomyces cerevisiae system (strain DLM101�) where inactive enzymes 
are secreted into the culture medium.  The culture medium is centrifuged at 7000g for 30 min to obtain cell-
free supernatant.  The supernatant is adjusted to pH 3.0 with 1 M HCL, gently stirred for 20 min at room 
temperature, and centrifuged for 120 min at 7000 g to pellet insoluble precipitates.  Two to four ml of 
Toyopearl SP-650M cation-exchange resin is equilibrated in Buffer A (100 mM glacial acetic acid, 2 mM 
sodium acetate) and added to the supernatant and nutated for a minimum of one hour.  The resin is allowed 
to settle and most of the supernatant is decanted.  The remaining resin + solution is loaded onto a Biorad 
polyprep chromatography column, washed with at least 100 bed volumes of Buffer A, and bound protein are 
eluted with 5 ml steps of Buffer A adjusted to pH 5.0, 6.0, 7.0 and 8.0 with 200 mM Tris pH 8.0.  Eluted 
proteins are dialyzed for >8hrs with enterokinase buffer (50 mM Tris pH 6.5, 10 mM CaCl2).  For mutants 
that do not self-activate, enterokinase light chain (NEB) is added until 50% or more of the protein is 
activated.  Activation can be followed by SDS-PAGE.  After activation, 1 to 3 mL of soybean trypsin 
inhibitor-agarose (Sigma-Alrdich) equilibrated in enterokinase buffer is added for at least one hour with 
nutating.  The activated enzymes bind specifically to this resin.  After binding, the resin is loaded into a 
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BioRad polyprep chromatography column and washed with 20-40 mL 50 mM Tris, pH 6.5 and 20-40 mL 50 
mM Tris pH 6.5 + 0.5 M NaCl sequentially.  The protein is eluted with 2-4 ml of 0.1 M formic acid (pH 
2.2).  Proteins are stored in this buffer at 4o C. 

 
D. Kinetic assays 
 
Kinetic parameters of Vmax and Km were measured assuming pseudo-first order kinetics as previously 
described(Hedstrom et al., 1994).  The substrate used was Suc-Ala-Ala-Pro-Lys-PNA (Bachem) dissolved in 
dimethylformamide (DMF) to 50mM.  Enzymes hydrolyze this substrate releasing p-nitroaniline, which is 
detected by monitoring absorption at 410 nm (extinction coefficient of 10204 M-1 cm-1).  The enzyme 
reactions were done at 23o C in 50 mM Hepes, 10 mM CaCl2 and 100 mM NaCl, at a pH 8.0 (protease assay 
buffer, PAB).  The total volume of reaction was 1 mL and the volume of substrate did not exceed 5%.  A 
maximum of 20 ul of enzyme (in 0.1 M formic acid) was added to the reaction.  In most cases, plots of 
initial velocity vs. substrate concentrations were fit to a hyperbola using non-linear regression to obtain Km 
and Vmax (Fig. S8a, S8b).  R-square for all regressions was at least 0.9.  To obtain kcat (as Vmax/active site 
concentration), active site concentration was measured by reacting the enzymes with 4-methylumbelliferyl 
p-guanidobenzoate (MUGB, Sigma-Aldrich), an enzyme inhibitor which releases a fluorescent compound, 
4-methyl umbelliferone (4-MU) upon reacting with the enzyme.  A standard curve of 4-MU was constructed 
to relate fluorescence counts to fluorophore concentration.  Some enzymes did not react with MUGB and 
active site concentration was estimated by calculating the absorbance at 280 nm using the extinction 
coefficient of 33720 M-1 cm-1.  In some cases, the enzyme was not saturated with feasible concentrations of 
substrate so the approximation that Km>>substrate concentration was used to calculate kcat/Km as the slope of 
the line of initial rate vs. substrate concentration.  Kinetic assays were verified by comparison of data for 
WT rat trypsin and mutants with previously reported data (Craik et al., 1985; Hedstrom, 1996; McGrath et 
al., 1992; Wang et al., 1997). 
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II. Supplemental Discussion on SCA/MDI Calculations 
 
A. Measures of conservation 
 
A multiple sequence alignment of M sequences of length L is represented by a binary array xi,s

(a ) , where 
1)(

, �a
six  if sequence s has amino acid a at position i, and 0 otherwise (s = 1,p, M is for sequences, i = 1,p, L 

is for positions and a = 1,p, 20 is for amino acids).  A Tbinary approximationU is to consider only the most 
frequent amino acid ia  at position i ; the alignment is then represented by a binary array xi,swhere xi,s �1 if 
sequence s displays the most frequent amino acid in the alignment at position i, and 0 otherwise (i.e., 
xi,s � xi,s

(ai ) ). 
 
As indicated in Section I, the Supplemental Experimental Methods, the measure of positional conservation )(a

iD  

is based on )(a
if , the observed frequency of amino acid a at position i, and )(aq , the background probability of 

amino acid a. This background probability is an estimation of the mean frequency of a in all proteins and we 
take q = (0.073, 0.025, 0.050, 0.061, 0.042, 0.072, 0.023, 0.053, 0.064, 0.089, 0.023, 0.043, 0.052, 0.040, 0.052, 
0.073, 0.056, 0.063, 0.013, 0.033), where amino acids are ordered according to the alphabetic order of their 
standard one-letter abbreviation. )(a

if  is computed as the number of sequences in the alignment having amino 
acid a at position i, divided by the total number of sequences, including those with a gap at i; it can also be 
written 

s

a
si

a
i xf )(

,
)( � , 

where xi,s
(a )  is averaged over all M sequences s. Similarly, in the binary approximation, we 

consider
ssi

a
i xf i

,
)( � . The position-specific conservation )(a

iD , which measures the degree of deviation of  

fi
(a) from q(a) , is derived from the probability ][ )(a

iM fP  of observing  fi
(a) in an alignment of M sequences, under 

the assumption that a has independent probability q(a) to be present in each sequence: 

PM [ fi
(a )] �

M!
Mfi

(a )� �!(M(1� f i
(a )))!

q(a )� �Mfi
( a )

1� q(a )� �M (1� fi
( a ) )

. 

 
When M is large, the Stirling formula leads to the approximation 

PM [ fi
(a )] � e�MDi

( a )

, with )(

)(
)(

)(

)(
)()(

1
1ln)1(ln a

a
ia

ia

a
ia

i
a

i q
ff

q
ffD

�
�

��� . 

The so-called relative entropy (Cover and Thomas, 2006) Di
(a) defines the positional conservation.   

 
An overall conservation Di taking into account the frequencies of all 20 amino acids can similarly be defined, 
but requires introducing a background probability for gaps.  If �  represents the fraction of gaps in the 
alignment, a background probability distribution can be taken as q (0) � �  for gaps, and q (a ) � (1� � )q(a )  for 

the 20 amino acids. Denoting �
�

��
20

1

)()0( 1
a

a
ii ff the fraction of gaps at position i , we can then write the 

probability of observing jointly at position i the frequencies (fi
(1),p, fi

(20)) of each of the 20 possible amino acids 
as 

� � � � � � � � � � iii MDMf
i

Mf

ii
iiM eqq

MfMf
MffP ���

)20()0(
)20()0(

)20()0(
)20()1(

!!...
!,..., �  
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where Di � fi
(a ) ln

f i
(a )

q (a )
a�0

20

�  defines the overall conservation at position i. 

 

The overall conservation Di can be compared to D i
(a ) � f i

(a ) ln
f i

(a )

q (a ) � (1� f i
(a )) ln

1� f i
(a )

1� q (a ) , the equivalent of 

)(a
iD , the positional conservation for amino acid a , when using the background probability distribution 

including gaps.  As a general rule, we have i
a

i DD �
)(

 and in practice, for multiple sequence alignments, 
)(a

iD  
is maximal for a � ai , the most frequent amino acid at position i. Note that 

)( ia
iD  and iD  are non-linear 

functions of fi
(a ) that rise more and more steeply as fi

(a ) approaches one.  A consequence is that for all but the 

least conserved sites, the overall conservation iD  is well approximated by 
)( ia

iD (Fig. S1), which justifies the 
use of the binary approximation.  In this approximation, we need not introduce a background probability for 
gaps and, therefore, we make use of Di

(ai )
 rather than Di

(ai )
 in this work.  

 
B. Measure of sequence similarity 
 
Given a set S of positions, we define a similarity matrix between pairs of sequence s,t  as 

Sia
a
tiSia

a
siSia

a
ti

a
si

S
st xxxx

���
��


,

)(
,,

)(
,,

)(
,

)(
,

)(  

where averages are here made over all amino acids a and positions i in the set S under consideration. In Figure 
6, S is taken to be either a sector or all the positions, and the sequences are represented in the one-dimensional 
space spanned by the first eigenvector of the similarity matrix )(S

st
 . 
 
 
C. SCA calculations 
 
In general, a covariance matrix reporting pairwise correlations between positions can be defined as 

Cij
(ab ) � xi,s

(a )x j ,s
(b )

s
� xi,s

(a )

s
x j,s

(b )

s
� f ij

(ab ) � f i
(a ) f j

(b ) 

where 
s

b
sj

a
si

ab
ij xxf )(

,
)(

,
)( � represents the joint frequency of having a at position i and b at position j. The 

corresponding expression in the binary approximation is 
Cij � xi,sx j ,s s

� xi,s s
x j,s s

� fij
(ai a j ) � fi

(ai ) f j
(a j ). 

SCA matrices can be obtained by weighting these covariance matrices by a function �  of the positional 
conservations )(a

iD , 
)()()()( )()(~ ab

ij
b

j
a

i
ab

ij CDDC ��� , 
or, in the binary approximation, 

ij
a

j
a

iij CDDC ji )()(~ )()( ��� . 
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Although not essential, the absolute value taken in the last formula eliminates negative correlations that 
originate from alternative choices of amino acids at a position.  Since our goal is to characterize positional 
correlations, the sign of amino acid-specific correlations is not considered in this work.  The weights used here 
are 

�(Di
(a )) �

�Di
(a )

�f i
(a ) � ln

f i
(a )(1� q(a ))

(1� f i
(a ))q(a )

��

!�
 �

&�

(�
'�. 

This choice of weights reflects the original principle of SCA to define correlations between positional 
conservations through a perturbation analysis on the sequence alignment (Lockless and Ranganathan, 1999).  
More precisely, if we introduce )(

,
a
siD , the positional conservation of amino acid a at position i for the alignment 

obtained by leaving out sequence s, the covariance matrix associated with this bootstrap procedure is 
t C ij

(ab ) � Di,s
(a )Dj ,s

(b )

s
� Di,s

(a )
s

Dj,s
(b )

s
. 

In the limit of a large number M of sequences, expanding to first order in 1/M this expression leads to 
t C ij

(ab ) �
1

M 2
c C ij

(ab ) (Efron and Tibshirani, 1994). 

 
We also note that in previous implementations of the SCA method, a reduced matrix ijCt  was defined from 

)(t ab
ijC  by 

t C ij � t C ij
(ab )� �2

a,b
�������

#�
%�$�

1/ 2

�
1

M 2
c C ij . 

Within the range of validity of the binary approximation, this matrix corresponds to c C ij  and therefore yields 
equivalent results.  A more detailed description of the SCA approach to measuring positional correlations will 
be reported elsewhere (O. Rivoire, S. Leibler, and R. Ranganathan).  A MATLAB toolbox implementing the 
methods described here is available by request from the authors.  The calculation of the SCA correlation matrix 
in this work is also described in the MATLAB script in section III of the supplementary information. 
 
 
D. Spectral cleaning 
 
Due to finite-size and phylogenetic effects (statistical and historical noises), most correlations reported by ijC~  

are not functionally significant. A spectral decomposition of ijC~  offers a simple way to partially sort out the 

different contributions to the correlations. The spectrum of ijC~ , composed of 223 eigenvalues ���1 �� � �223 , is 
shown in Fig. S2A. upper panel. The bulk of this spectrum, made of the 218 smallest eigenvalues, can be 
attributed to finite-size effects. Indeed, the same analysis performed on randomized alignments leads to the 
spectrum shown in the lower panel of Fig. S2A. The comparison of the two spectra indicates that only the top 5 
modes of ijC~  are informative. This Tnoise undressingU procedure applies more generally to any correlation 
matrix subject to statistical noise due to limited sampling; it has for instance been previously applied to the 
analysis of correlation of financial stocks, using time series of limited length. The approach is motivated by 
random matrix theory, which establishes, for several classes of noise, the existence of universal spectral 
distributions with a sharp threshold bounding the maximal eigenvalue. Note that the criterion invoked here to 
select a few significant modes fundamentally differs from the criterion usually invoked in principal component 
analysis where modes (principal components) are selected to explain a major fraction of the correlations, 
irrespectively of their origin. Here, the top 5 significant modes represent only about 20% of the total variance, 
consistent with the finding much of the total variance is dominated by statistical noise. 
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Among the significant modes, the first mode has a distinctive property: it describes a "coherent" correlation of 
all positions. This can be seen analytically by taking advantage of the fact that the first mode makes the 
dominant contribution to ijC~ . Indeed, as a first order approximation, ijC~  can be approximated by 

�
�

k
k

ji
ij S

SS
C )1(~

  with ��
j

iji CS ~
. 

The matrix )1(~
ijC  has for only non-zero mode �1

(1) � Si
2

i
� Si

i
� , with an associated eigenvector having for 

components Si Sk
2

k
�

��

��
��

#�

%�
$�

1/ 2

. These expressions are good approximations of the first eigenvalue and eigenvector 

of the matrix ijC~  (Fig. S2B). The first eigenvector thus reports the contribution of each position to the total 
correlation. Since each position contributes with the same sign to this first eigenvector (mathematically, a 
consequence of the Perron-Frobenius theorem), it corresponds to a global, coherent mode. 
 
The origin of these coherent correlations may be purely historical. As a simple illustrative example, consider a 
situation where all sequences in an alignment derive independently from a common ancestral sequence, in 
absence of any selective pressure. The divergence of each sequence from the ancestral sequence is assumed to 
be described by a number � , with 0 � � �1, where �  gives the probability for a position of the sequence to 
have conserved the original amino acid. �  is itself assumed to be distributed over the sequences with a 
probability distribution P(�) such that  � � �P(�)d�" �1/2 , so that the dominant amino acid at each 
position in the alignment corresponds to the original amino acid in the ancestral sequence. Ignoring finite-size 
effects, the correlation matrix Cij  reads in the binary approximation Cij � �2 � �

2
, where the bar refers to an 

average with the distribution P(�). In this simplistic model, since all positions are equivalent, they are 
associated with a common weight � , and the SCA matrix is therefore a matrix made of identical elements, 
c C ij � � 2 �2 � �

2� �. Such a constant matrix has a single non-zero mode (of order L , the number of positions), 

whose origin is purely historical.  
 
In practice, we expect both historical and functional constraints to contribute to the first mode of the SCA 
matrix.  Regardless, this coherent mode is not useful in defining the sectors, which correspond to non-coherent 
correlations of different groups of positions. Based on a similar logic, the first mode of the correlation matrix is 
disregarded when analyzing statistical interactions between stocks in finance; in this context, it is interpreted as 
the coherent response of all stocks to external economic factors.  In addition, we note that historical constraints 
could also contribute partially to modes other than the first one (especially when the sampling of sequences is 
strongly non-uniform and segregated into subfamilies, see section F below).  Previous studies have advanced 
various approaches for reducing the effect of non-uniform sampling in protein alignments; future work should 
evaluate these approaches for improving the signal to noise in the SCA matrix.  
 
 
E.  Sector identification 
 
The identification of the sectors is based on the intermediate modes 2 to 5. Specifically, we identify here three 
sectors in the serine protease family based on the second and fourth eigenvectors, 2  and 4 , of ijC~ (we use 

here the bracket notation for representing eigenvectors: 2  thus denotes the second eigenvector, with 
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component along position i given by i 2 ). The justification for using the modes 2 and 4 is provided in Figure 
S3. More precisely, the red sector is defined as the positions i  for which i 2 �   and i 2 � i 4 , the blue 
sector as those for which i 2 � � and i 2 � � i 4 , and the green sector as those for which i 4 �   and 
i 4 � i 2 . The threshold  � 0.05 is chosen to separate significant weights along an eigenvector from 

statistical noise, and is obtained by comparison with an analysis of randomized alignments (Fig. S2C-E). 
Eigenvectors are in general defined only up to a multiplicative factor and are here normalized so that 

i k 2

i
� �1, but the sign of the weights to which a sector is associated is arbitrary. 

 
The particular eigenvector with which a sector is associated, while not arbitrary, has no fundamental 
significance. Thus, the green sector is found here along 4 , but, in other implementations of the SCA, it may 
be found along 3  or 5 . The group of positions with largest weights along an eigenvector can indeed 
comprise different sub-groups of positions not significantly correlated. Figure S3B ( 3  vs 2 ) thus shows that 
the group of positions with largest positive weights along 3  is subdivided by 2  into two uncorrelated sub-
groups, corresponding to the red and blue sectors. Figure S3C ( 4  vs 3 ) shows that the group of positions 
with largest negative weights along 3  is similarly subdivided by 4  into two uncorrelated sub-groups, one of 
which corresponding to the green sector.  A difference between the other  sub-group, with i 4 � �, and the 
green sector, with i 4 �  , is apparent in Figure S3E ( 5  vs 4 ) which shows that 5  subdivides the sub-
group with i 4 � � but not the green sector, which consists of more correlated positions.  Below, this sub-
group is shown to be a Tpseudo-sectorU, which unlike the blue, red, and green sectors, arises from a specific 
phylogenetic bias in the S1A alignment. 
 
The same principles, when applied to stock correlations in the financial context, leads to the identification of 
economic sectors. Generally, in proteins as in finance, a sector needs not be simply associated with a 
eigenvector (it may for instance correspond to a linear combination of different eigenvectors). Statistical 
methods beyond spectral analysis may thus be more appropriate to define sectors.  For example, upon the 
assumption that statistically independent sectors do exist, techniques such as independent component analysis 
(ICA, (Hyvarinen et al., 2001; Stone, 2004)) may be valuable.  Preliminary analysis of the S1A family using 
ICA identifies the three sectors as independent components and is consistent with results reported here.  
 
 
F. SPseudo sectorsT 
 
For the statistical method followed here to lead to protein sectors, one requirement is that the sequences must be 
distributed sufficiently uniformly. While presenting a precise criterion of uniformity and providing solutions for 
cases where this condition is not met is beyond the scope of the present paper, the origin of the problem can be 
clearly illustrated on the example of the serine protease alignment.  

A simple way to visualize how sequences are distributed is by projecting them along the top eigenvectors of the 
global similarity matrix, i.e., the matrix )(S

st
  introduced in B, where S consists of all the positions. For our 
alignment of serine proteases, this representation, shown in Fig. S4A, reveals a small but distinct subfamily of 
sequences (in yellow), which comprises the snake venom proteases. The deviation from uniform sampling 
caused by the presence of this subfamily has a direct impact on the spectral property of the correlation matrix 

ijC~ : it is responsible for the Tpseudo sectorU corresponding to the subgroup shown as non-sector positions with 
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large negative weight along the third eigenvector of ijC~ , and large negative weight along the fourth eigenvector 
(Fig. S3).  

To demonstrate this, we define the pseudo-sector as comprising positions i  satisfying i 3 �  , but not 
associated with either the red, blue or green sector; these positions are colored in magenta in Fig. S4B.  Fig. 
S4C shows how the blue, red, green, and magenta sectors classify the sequences in relationship to the global 
phylogenetic bias that separates the snake proteases from the remainder of sequences.  This analysis shows that 
the magenta sector uniquely separates the snake proteases from the rest of the sequences, a finding that implies 
that the magenta sector (but not the blue, red, and green sectors) is a Tpseudo-sectorU arising from non-uniform 
sampling. To further test the claim that the magenta sector specifically arises from the presence of the snake 
protease subfamily, we repeated the SCA and spectral analysis after removing this subfamily from the 
alignment.  The result shows that while the blue, red, and green sectors remain intact, the magenta sector is now 
no longer identifiable in the significant eigenvectors of ijC~  (Fig. S4D). 

This example serves as an illustration of one of the limitations of the approach taken here to identify sectors 
from the eigenvectors of the correlation matrix ijC~ : when the sequences in the alignment are non uniformly 
distributed, and, more particularly, when distinct subfamilies of sequences are present, this approach can result 
in the identification of pseudo-sectors. However, the analysis of the S1A alignment also shows that such 
pseudo-sectors have distinct statistical properties, indicating that further methods may be designed to correct 
this problem. The development of such methods is a matter for future research, but two aspects of the solution 
seem clear: (1) simply eliminating a subfamily from the alignment is unlikely to be the most appropriate 
solution, as sequences forming a subfamily may contribute to identifying actual sectors, and (2) simply 
disregarding the positions attributed to a pseudo sector is also unlikely to be an appropriate solution, as pseudo 
sectors may correspond to artifactual subdivisions of actual sectors. 

 
 
G.  Representation of significant correlations (Fig. 1E) 
 
To summarize the result of the above procedures, Figure 1E represents the correlations between the 65 
identified sector positions captured by the significant modes 2 to 4 of ijC~ . The corresponding matrix can 

formally be written c C '� �k k k
k� 2

4

� . In Figure 1E, the sector positions are ordered with, first, the positions i of 

the red sector, ordered by decreasing values of i 2 , second, the positions i of the blue sector, ordered by 
increasing values of i 2 , and, third, the positions i of the green sector, ordered by decreasing values of i 4 . 
Finally, only the positive elements of c C '  are represented. 
 
c C '

 
also contains some negative inter-sector correlations, mainly between the blue and red sectors. They reflect 

an artifact of a simplistic representation relying exclusively on the modes 2 to 4. Indeed, while the first mode is 
not required for identifying the sectors, it can account for parts of the functional correlations, which are not 
included in c C ' . Consistently with this argument, Figure S5 shows that the negative elements of c C '

 
correspond 

to small elements of the original correlation matrix c C  while, in contrast, the large positive elements of c C '  
correspond to large elements in c C . Finding a more appropriate representation of the functional correlations is 
an issue beyond the scope of the present paper, which concentrates on the identification and description of 
sectors. 
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H.  MDI calculations 
 
Principles:  The minimum discriminatory information  (MDI,(Kullback, 1997)) method (see Methods) aims at 
generalizing the definition of positional conservation based on relative entropies to include correlations between 
positions.  Its principles are completely distinct from the SCA method. It can be defined for an arbitrary number 
of amino acids and correlations of arbitrary order, although computational complexity limits the scope of the 
calculations (see below).  The calculations presented here are made for pair-wise correlations between positions 
from the sectors, as identified by the spectral analysis of the ijC~  matrix. For simplicity, we also restrict the 
presentation of the method to the binary approximation; a sequence is thus represented by a binary vector x  
with components ix , where 1�ix  if the sequence has the amino acid ia  at position i, and 0 otherwise. 
 
Given the background distribution Q(x) � q(a )� �

i
� xi 1� q(a )� �1�xi and a set of frequencies F (whose elements 

have the form )( ia
if  or )( jiaa

ijf ), the MDI method yields a probability distribution )(* xPF  whose marginals 
reproduce the frequencies in F and which is Tminimally biasedU with respect to Q(x). The reproduction of the 
marginals precisely means that  

PF
*(x1,..., xi�1,1, xi�1,..., xL )

xk� �k�i

� � f i
(ai )  

when )( ia
if  is in F and  

PF
*(x1,...,xi�1,1,xi�1,...,,x j�1,1,x j�1,...,xL )

xk� �k�i , j

� � f ij
(ai a j ) . 

when )( jiaa
ijf is in F. 

 
The MDI approach selects for )(* xPF  the probability distribution P(x) which minimizes the relative entropy 
defined by 

��
x xQ

xPxPQPD
)(
)(ln)()( . 

When F comprises only individual frequencies )( ia
if , it can be shown that PF

*(x) � fi
(ai )� �

i
� xi 1� f i

(ai )� �1�xi  

and that ��
i

a
iF

iDQPD )(* )||( , where )( ia
iD  is the position-specific conservation at position i  defined above.  

The entropic approach used for defining positional conservation can thus be seen as a particular case of the 
MDI approach. 
 
When F consists of the pair-wise frequencies )( jiaa

ijf , the optimal probability distribution )(* xPF  can be 
characterized as the only distribution of the form  

PF
*(x) �

1
Z

exp Jij xix j � hixi
i
�

i� j
�

��

����
#�

%�$�
 

where the parameters hi, Jij and Z are fixed by the constraints on the marginals of )(* xPF  associated with the 
)( ia

if 's and )( jiaa
ijf 's, and by the constraint that 1)(* ��

x
F xP . 

 



 12

Computing the entropy )||( * QPD F  for F including the )( jiaa
ijf  for all pairs of positions of the serine protease 

family is a computationally intractable problem (the difficulty stems from the fact that the sequence space 
cannot be sampled exhaustively because of its enormous dimension, which, even in the binary approximation, 
is 2223).  We are, therefore, led to restrict the calculations to subsets of positions S (for which the associated set 
F consists of all the frequencies between pairs of positions in S). We use here a simple and exact method known 
as generalized iterative scaling (Darroch and Ratcliff, 2007), which can treat up to about 20 positions. More 
sophisticated or approximate algorithms could allow us to reach larger sizes, but including all positions is in 
any case out of reach and studying groups of small size is sufficient to exhibit the salient statistical features of 
the serine protease alignment. 
 
Algorithm:  The generalized iterative scaling algorithm (Darroch and Ratcliff, 2007) starts by setting all the 
parameters hi and Jij to hi

(0) = 0 and Jij
(0)= 0,  and iteratively updates them according to the rules 

ti

a
it

i
t

i x
f

LL
hh

i )(
)()1( ln

)1(
2
�

��� , and Jij
(t�1) � Jij

(t ) �
2

L(L �1)
ln

f ij
(ai a j )

xix j t

, 

where xi t
and xix j t

 are averages taken with the probability distribution  

PS
(t )(x) �

1
Z ( t ) exp Jij

(t )xix j � hi
(t )xi

i
�

i� j
�

��

����
#�

%�$�
 and L is the number of positions under consideration ( Z (t ) is a 

normalization). These iterations are guaranteed to converge towards the exact value of the parameters. Given 
PS

*, the probability distribution to which the iterations converge, the entropy for the group of positions S, DS , is 
given by D PS

* Q� �. 
 
Entropies as measure of conservation: In the present context, entropies provide an estimate of the degree of 
conservation of a group of positions. Figure S6A thus depicts the entropies of different groups of positions, 
each consisting of the 5 positions with largest weight along the principal component of the SCA matrix defining 
the three sectors (for comparison, an additional group is represented in black, that includes the 5 positions with 
largest negative weight along 4 ).  The green sector appears to be clearly more conserved than the red or blue 
sector, consistently with the fact that it is associated with the catalytic mechanism, which is the most conserved 
feature of the family. 
 
Entropies as measure of statistical independence:  Entropies can also be used to estimate the degree of statistical 
dependence between members of a group of positions S. This is done by comparing the entropy DS  of the 
group with the sum of positional conservations Di

(ai )

i�S
� . The difference IS � DS � Di

(ai )

i�S
� , which we call the 

correlation entropy, is necessarily non-negative, and quantifies the statistical interactions between positions. 
This part of the total entropy DS  is represented with a lighter color in Figure S6A. It appears to be larger for the 
red or blue sectors than for the group of positions with negative weights along 4 , represented in black, 
although this group has a total entropy Dblack  of same order of magnitude than Dred  and Dblue . This observation 
indicates that positions belonging to this group are statistically more independent than those forming the red 
and blue sector, which supports the view that they should not define a sector. 
 
Entropies can finally be used to estimate the degree of statistical independence between different groups of 
positions.  In Figure S6B, we computed the entropy Dred �blue�green  for the group of 15 positions comprising the 
same 5 positions from each sector than in Figure S6A. The difference 	 � Dred �blue�green � Dred � Dblue � Dgreen , 
represented in white in Figure S6B, quantifies the statistical interdependence of the sectors. It is to be compared 
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with the correlation entropy for these 15 positions, Ired �blue�green � Dred �blue�green � Di
(ai )

i
� . The latter quantity 

is represented in Figure 2D where it is decomposed into the 3 parts measuring the respective intra-sector 
statistical dependences of each sector, Ired , Iblue  and Igreen  (respectively in red, blue and green), and a part 
measuring the inter-sector statistical dependence (in white), corresponding 
to Ired �blue�green � Ired � Iblue � Igreen � 	. It is clear that the inter-sector contribution represents only about 20% 
of the total; as a comparison, when forming other groups with the same positions, the inter-group contribution is 
found to account for about 60% of the total (these groups were randomly formed with the only constraint that 
no more than 3 of the 5 positions of a same sector are assigned to the same group). 
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III. Supplemental MATLAB Script for SCA Calculations 
 
The following script details how the calculations and figures related to the identification of the sectors by SCA 
can be reproduced using standard MATLAB functions. The only requirements are wmsa_serprot.maty, a mat-file 
containing the multiple sequence alignment of the S1A serine protease family, and the MATLAB Image 
Processing toolbox, for representing the SCA matrix. The script follows the sections A-E of the preceding 
supplementary notes. MATLAB codes reproducing the calculations presented in sections F-G are available 
upon request.  The S1A alignment is available for download from the Ranganathan lab website, and a 
MATLAB toolbox for general usage of SCA methods is available by request from the authors 
(rama.ranganathan@utsouthwestern.edu). 
 
  
%% A. Measures of conservation 
  
load msa_serprot 
% loads 'msa', an alignment of the S1A serine protease family having the 
% form of a 1470*223 array, where each line corresponds to a different 
% sequence. Amino acids are represented by their standard one-letter  
% abbreviation and gaps by '-': 
Code_aa='ACDEFGHIKLMNPQRSTVWY-'; 
  
[N_seq,N_pos]=size(msa); 
% N_seq gives the number of sequences, N_pos the number of positions. 
  
% Background probabilities: 
freq_bg=[.073 .025 .050 .061 .042 .072 .023 .053 .064 .089... 
          .023 .043 .052 .040 .052 .073 .056 .063 .013 .033];   
  
% Frequencies of amino acids at given positions: 
freq=zeros(21,N_pos);  
for a=1:21, freq(a,:)=sum(msa==Code_aa(a))./N_seq; end 
% freq(a,i) gives the frequency of amino acid a at position i. 
% (gaps are treated as a 21st amino acid for latter convenience) 
  
% Prevalent amino acid at each position: 
[freq_bin,prev_aa]=max(freq(1:20,:)); 
% Code_aa(prev_aa(i)) gives the prevalent amino acid at position i, and 
% freq_bin(i) its frequency. 
  
% Simplified alignment in the binary approximation: 
msa_bin=1.*(msa==repmat(Code_aa(prev_aa),N_seq,1)); 
% for each position (column of the array msa_bin), the prevalent amino acid 
% is represented by '1', and all other amino acids, including gaps, by '0'. 
  
% Background probabilities for the prevalent amino acids: 
freq_bg_bin=freq_bg(prev_aa); 
  
% Relative entropies in the binary approximation: 
D_bin=freq_bin.*log(freq_bin./freq_bg_bin)... 
      +(1-freq_bin).*log((1-freq_bin)./(1-freq_bg_bin)); 
  
% Fig. 1A: relative entropies. 
figure(1); bar(1:N_pos,D_bin);axis([0 N_pos+1 0 4]); 
xlabel('positions');ylabel('D_i^{(a_i)}'); 
  
% A histogram of relative entropies. 
figure(2); hist(D_bin,N_pos/5); 
xlabel('D_i^{(a_i)}');ylabel('number'); 
  
% Fraction of gaps: 
frac_gaps=sum(freq(21,:))/N_pos; 
  
% Background probabilities accounting for gaps: 
freq_bg_wg=[(1-frac_gaps)*freq_bg frac_gaps]; 
freq_bg_bin_wg=freq_bg_wg(prev_aa); 
  
% Relative entropy in the binary approx with above background probability: 
D_bin_wg=freq_bin.*log(freq_bin./freq_bg_bin_wg)... 
         +(1-freq_bin).*log((1-freq_bin)./(1-freq_bg_bin_wg)); 
  
% Overall conservation 
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D_glo=zeros(1,N_pos); 
for i=1:N_pos,  
    for a=1:21        
        if(freq(a,i)>0)  
            D_glo(i)=D_glo(i)+freq(a,i)*log(freq(a,i)/freq_bg_wg(a));  
        end 
    end  
end 
% (when freq(a,i)=0, freq(a,i)*log(freq(a,i)) is to be considered =0, 
%  since x*log(x)->0 for x->0) 
  
% Fig. S1: validity of the binary approximation 
figure(3); plot(D_glo,D_bin_wg,'o'); 
xlabel('Overall conservation');  
ylabel('Conservation in the binary approximation'); 
  
  
%% B. SCA calculations 
  
% Correlation matrix in the binary approximation: 
freq_pairs_bin=msa_bin'*msa_bin/N_seq; 
C_bin=freq_pairs_bin-freq_bin'*freq_bin; 
  
% Weights (defined as gradients of relative entropy): 
W=log(freq_bin.*(1-freq_bg_bin)./(freq_bg_bin.*(1-freq_bin))); 
  
% SCA matrix: 
C_sca=(W'*W).*abs(C_bin); 
  
% Fig. 1D: representation of the SCA matrix 
figure(4); imshow(C_sca,[0 .5]);colormap(jet);   
  
  
%% C. Spectral cleaning 
  
% Spectrum of the SCA matrix  
[eigvect_unsorted,lambda_unsorted]=eig(C_sca);   
[lambda,lambda_order]=sort(diag(lambda_unsorted),'descend'); 
eigvect=eigvect_unsorted(:,lambda_order); 
% (the eigenvector are ordered for future convenience)   
 
% A randomization is performed at the level of the alignment:  
% the amino acids are permuted between the sequences independently  
% for each position.  
% The positional conservations are therefore preserved. 
N_samples=100; N_ev=5; 
lambda_rnd=zeros(N_samples,N_pos); 
eigvect_rnd=zeros(N_samples,N_pos,N_ev); 
for s=1:N_samples 
    msa_bin_rnd=zeros(N_seq,N_pos); 
    for pos=1:N_pos 
        perm_seq=randperm(N_seq);  
        msa_bin_rnd(:,pos)=msa_bin(perm_seq(:),pos); 
    end    
    freq_pairs_bin_rnd=msa_bin_rnd'*msa_bin_rnd/N_seq; 
    C_bin_rnd=freq_pairs_bin_rnd-freq_bin'*freq_bin; 
    C_sca_rnd=(W'*W).*abs(C_bin_rnd); 
    [eigvect_unsorted,lambda_unsorted]=eig(C_sca_rnd);   
    [lambda_sorted,lambda_order]=sort(diag(lambda_unsorted),'descend'); 
    lambda_rnd(s,:)=lambda_sorted;    
    eigvect_rnd(s,:,:)=eigvect_unsorted(:,lambda_order(1:N_ev)); 
end  
% Note that 'freq_bin' and 'W' are not affected by the randomization. 
  
% Fig. S2A: comparison of spectra 
figure(5); 
subplot(2,1,1); [yhist,xhist]=hist(lambda,N_pos); bar(xhist,yhist,'k');axis([0 30 0 35]); 
xlabel('eigenvalues (actual alignment)');ylabel('number'); 
[n]=hist(lambda_rnd(:),xhist); 
subplot(2,1,2); bar(xhist,n/N_samples,'k'); axis([0 30 0 35]); 
xlabel('eigenvalues (randomized alignments)');ylabel('number'); 
% (the histogram from randomized alignments is normalized for comparison) 
 
  
% Fig. S2B: Interpretation of the first mode 
figure(6); 
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plot(eigvect(:,1),sum(C_sca)/(sum(sum(C_sca).^2))^(1/2),'o'); 
axis([0 .25 0 .25]); 
xlabel('<i |1> (first eigenvector of C\_ sca)'); 
ylabel('\Sigma_j C\_ sca_{ij} (normalized)'); 
  
% Fig. S2C-E: Threshold for the weights on eigenvectors 2 to 4 
figure(7); 
for k=2:4 
    subplot(2,3,k-1);  
    hist(eigvect(:,k),N_pos); axis([-.25 .25 0 5]); 
    xlabel(['<i |' num2str(k) '>']); ylabel('number'); 
    subplot(2,3,k+2);  
    z=eigvect_rnd(:,:,k);[n,x]=hist(z(:),N_pos); 
    plot(x,n/N_samples,'r'); axis([-.25 .25 0 5]); 
    xlabel(['<i |' num2str(k) '> (random)']); ylabel('number'); 
end 
  
% Definition of the noise threshold: 
threshold=.05; 
  
% Definition of sector positions: 
sec_red=find(eigvect(:,2)>max(threshold,abs(eigvect(:,4)))); 
sec_blue=find(eigvect(:,2)<-max(threshold,abs(eigvect(:,4)))); 
sec_green=find(eigvect(:,4)>max(threshold,abs(eigvect(:,2)))); 
  
% Cleaned SCA matrix: 
C_clean=zeros(N_pos,N_pos); 
for k=2:4, C_clean=C_clean+lambda(k)*eigvect(:,k)*eigvect(:,k)'; end 
  
% Ordering of sector positions: 
[x,order]=sort(eigvect(sec_blue,2)); sec_blue_ord=sec_blue(order); 
[x,order]=sort(-eigvect(sec_green,4)); sec_green_ord=sec_green(order); 
[x,order]=sort(-eigvect(sec_red,2)); sec_red_ord=sec_red(order); 
  
% Fig. 1E: cleaned SCA matrix 
sec_all_ord=[sec_blue_ord; sec_green_ord; sec_red_ord]; 
figure(8); imshow(C_clean(sec_all_ord,sec_all_ord),[0 .25]);colormap(jet); 
  
% Negative elements in the cleaned SCA matrix 
figure(9); imshow(C_clean(sec_all_ord,sec_all_ord),[-.5 .5]);colormap(jet); 
  
% Fig. S4: relation between cleaned and original correlations 
figure(10); 
plot(C_sca(:),C_clean(:),'o'); 
xlabel('elements of the original SCA matrix');  
ylabel('elements of the cleaned SCA matrix (based on eigenvectors 2-4)'); 
  
  
%% D. Sector indentification 
  
% Fig. S3: representation of the significant eigenvectors 
modes=[2 3; 2 4; 3 4; 4 5];  
figure(11); 
for k=1:4 
    subplot(2,2,k); x=modes(k,1); y=modes(k,2); 
    plot(eigvect(:,x),eigvect(:,y),'ok',... 
         eigvect(sec_blue,x),eigvect(sec_blue,y),'ob',... 
         eigvect(sec_green,x),eigvect(sec_green,y),'og',... 
         eigvect(sec_red,x),eigvect(sec_red,y),'or'); 
    xlabel(['<i |' num2str(x) '>']);ylabel(['<i |' num2str(y) '>']); 
    axis([-.4 .4 -.4 .4]); 
end 
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Figure S1: Close agreement between the overall relative entropy of positions ( Di ) compared with D i
(ai ) , 

the value for just the most prevalent amino acid in the multiple sequence alignment of 1470 members of the 
trypsin family of serine proteases.  These data provide the basis for the simplified binary approximation used 
in this work. 
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Figure S2: A, Eigenvalue spectra for the �Cij  matrix corresponding to the S1A serine protease family (top 
panel) and for a hundred trials for randomizing the S1A sequence alignment (bottom panel).  The 
randomization process scrambles the order of amino acids in each alignment column independently; thus 
amino acid frequencies at positions are never changed.  This analysis shows that the bulk of the spectrum 
(comprising the lowest 218 out of 223 total eigenvalues) can be attributed to limited sampling of sequences.  
B, A scatter plot of the first mode of the 

�
�Cij  matrix against the net contribution of each position to the total 

correlation.  As described in the Supplemental Experimental Procedures and Supplemental Discussion, this 
relationship is expected for SCA matrices with a dominant first mode.  C-E, The distribution of positional 
weights for eigenvectors 2-4 of the 

�
�Cij  matrix (upper panels).  The bottom panels show the average 

distribution of position weights for 100 trials of randomization of the S1A multiple sequence alignment.  
The randomization procedure shuffles the order of amino acids at each position in the alignment, a process 
that eliminates all correlations between positions while preserving the amino acid frequencies at each 
position.  The randomized eigenvector distributions are minimally well-fit by a two Gaussian model (r2>0.95 
in each case, in red).  The dashed lines at +/- 0.05 for each eigenvector represent roughly two standard 
deviation limits for the broader Gaussian and are used as significance thresholds for determining sector 
compositions (see Fig. S3). 
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Figure S3:  Residue weights along eigenvectors 2-4 of the SCA correlation matrix.  A, a three dimensional 
scatter plot of these eigenvectors shows a pattern of residue weights in which most of the 223 positions in 
the alignment contribute little and cluster near the origin, and the three sectors (colored red, blue and green), 
each comprising a small fraction of total residues, emerge as distinct groups along characteristic directions.  
Together with the two dimensional projections of all pairs of these eigenvectors (B-D, and black dots, panel 
A), these data show (B) that the red and blue sectors separate along the second principal component, (C) that 
the green sector begins to emerge along eigenvector 3 and is further separated from other positions with 
significant eigenvector 3 weights (in white) along eigenvector 4, and (D) that the plot of eigenvectors 2 and 
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4 provides the clearest basis for sector identification.  E, a plot of eigenvectors 4 and 5 shows that while the 
green sector remains intact, the group of white residues also separating along eigenvectors 3 and 4 are yet 
further subdivided along eigenvector 5, arguing that these are unlikely to represent a unique sector.  The 
finer subdivisions of these positions along the lower eigenvectors may have functional meaning, but given 
the first order approach in this work of just studying the statistically obvious eigenvectors, is not considered 
here.  F, Detailed plot of residue weights for eigenvectors 2 and 4, with labels for positions making large 
contributions to each sector.  The color gradients reflect the weight along the respective eigenvectors for 
comparison with Fig. 3A-C, and the starred residues represent the catalytic triad.  The gray lines reflect the 
average range of weights for 100 trials of alignment randomization (see Supplemental Discussion and Fig. 
S2 C-E). 
 
 
 
 
 

 
 
Figure S4:  A pseudo-sector in the S1A family.  A, S1A sequences projected on the two top eigenvectors of 
the global similarity matrix )(S

st
  (section B), where S consists of all the positions.  The first two 
eigenvectors capture much of the variance in the similarity matrix, and so this analysis provides a reasonable 
mapping of the sequence relationships between S1A proteins.  This analysis shows that while most S1A 
proteins are roughly uniformly distributed, a small, distinct subfamily of sequences exists (in yellow), which 
comprises the snake venom proteases.   B, sequence position weights for eigenvectors 2 and 3 of the �Cij  
matrix (as in Fig. 3B) but with the pseudo-sector positions colored in magenta.  C, histograms of all the 
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1470 sequences in the S1A alignment projected along the first principal component of the similarity matrix 
calculated based on the blue, red, green, and magenta sectors, as labeled.  The snake proteases are shown in 
yellow; this analysis shows that while the blue, red, and green sectors do not effectively classify sequences 
by this globally distinct subfamily, the magenta sector does.  This identifies the magenta sector as a pseudo-
sector | a group of positions that likely emerges as correlated due to historical noise.  D, The positional 
weights along eigenvectors 2 and 3 of the �Cij  matrix calculated after removal of the snake proteases.  This 
shows that while the blue, red, and green sectors are intact, the magenta sector is no longer evident, a finding 
that reinforces the notion that this pseudo-sector emerges solely due to the presence of the distinct clade of 
snake proteases. 
 
 
 
 
 

 
 
Figure S5:  A scatterplot of correlations in the initial SCA correlation matrix ( �Cij , Fig. 1D, called C_sca in 
the MATLAB script) against those in the correlation matrix computed after spectral TcleaningU to remove 

eigenvalues 1 and 5-223 ( c ��C ij � �k k k
k�2

4

� , called C_clean in the MATLAB script).  Post cleaning, the 

correlations matrix shows negative correlations that arise exclusively from weakly correlated position pairs 
in the initial correlation matrix.  These negative correlations are artifactual in nature due to complete 
removal of the first eigenvalue and are not shown in representation of the cleaned SCA correlation matrix 
(Fig. 1E). 
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Figure S6: A, Entropies DS  for S composed of the 5 positions with largest positive weights along 
eigenvector 2 (red sector, in red), negative weights along eigenvector 2 (blue sector, in blue), positive 
weights along eigenvector 4 (green sector, in green) or negative weights along eigenvector 4 (non-sector, in 
black). DS  is the sum of position-specific entropies, Di

(ai )

i�S
�  (darker color), and of a correlation entropy IS  

(lighter color). B, Entropy DS  for S composed of the 15 positions consisting of the 5 positions with largest 
positive weights along eigenvector 2 (red sector), negative weights along eigenvector 2 (blue sector) and 
positive weights along eigenvector 4 (green sector). DS  is the sum of the sector-specific entropies shown in 
A, Dred � Dblue � Dgreen  (in red, blue and green), and of an inter-sector correlation entropy 	  (in white). For 
comparison, the results of the decomposition of DS  in 3 groups randomly formed with the same 15 
positions, is also shown. 
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Figure S7:  A slice through the core of rat trypsin, with residues colored by positional conservation (A, 
reproduction of Fig. 1C), or sector composition (B, defined in Fig. 3, and Figs. S2-S3).  The data show that 
while positional conservation follows the simple rule that conserved residues tend to be located within the 
protein core and at functional surfaces, the analysis of the pattern of correlated conservation of sequence 
positions uniquely reveals the decomposition of conservation into sectors.  Note that while most sector 
residues are also at least moderately conserved, not all conserved residues contribute to sectors.   Taken 
together, this suggests a heterogeneous pattern of conservation within the protein core in which some 
conserved residues act more independently and idiosyncratically within members of a protein family while 
others act cooperatively and more systematically. 
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Figure S8a:  Kinetic analysis of single alanine mutants in rat trypsin.  Shown are plots of initial velocities as 
a function of substrate concentration; experiment conditions and details of the assay are described in the 
methods section.  Symbols are color coded according to the following scheme: black (wild-type), red (red 
sector mutants), blue (blue sector mutants), white (non-sector mutants). 
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Figure S8b:  Kinetic analysis of double alanine mutants in rat trypsin.  Plots and color coding are as 
described in the Fig. S8a legend, except that white symbols in panels B-C represent double mutants as 
indicated in Fig. 5C 
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Figure S9a:  Thermal denaturation data for single alanine mutants in rat trypsin. A, Mutants in the red 
sector (red curves) show denaturation profiles and associated Tms (table to right, and in order of appearance 
in the graph left to right) that are similar to that of wild-type (in black).  B, In contrast, mutations in the blue 
sector (blue curves) show Tms (table to right, and in order left to right) that are significantly lower than wild 
type (in black).  C, Mutants in non sector positions (in white) show Tms that are similar to that of wild type 
(in black).  For clarity, symbols are plotted every 20 data points. 
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Figure S9b:  Thermal denaturation data for double alanine mutants in rat trypsin.  A, Double mutants within 
the blue sector (blue curves) show Tms (table to right, in numbered order of appearance in graph left to right) 
that differ significantly from that of wild type (in black) and that are generally non additive with regard to 
the degree of destabilization for the single mutants (compare with Fig. S9a, panel A).  In contrast, a multiple 
mutant in red sector residues (Hswap, red curve) shows a Tm close to that of wild type trypsin.  B-C, Double 
mutants between red and blue sectors (in white) show destabilization relative to wild type (in black) that is 
nearly additive with regard to their associated single mutants (in red and blue). For clarity, symbols are 
plotted every 20 data points. 
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Figure S10:  Thermal denaturation in C136A shows no unfolding transition under the experimental 
conditions used in this work.  A, Intrinsic temperature dependence of tryptophan fluorescence is well fit by a 
single exponential function.  B, Raw data for thermal denaturation of wild-type rat trypsin shows a clear 
sigmoidal transition corresponding to protein unfolding followed by a post-transition region that is well fit to 
a single exponential.  C, Thermal denaturation in C136A shows no discernable transition, and is 
approximated throughout by a single exponential function.   
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Figure S11:  Sectors in the PDZ (PSD95/Dlg1/ZO-1) family of protein interaction modules.  A, the SCA 
correlation matrix (

�
�Cij ) for an alignment of 240 PDZ domains (92 x 92 sequence positions), and B, the SCA 

matrix after removal of statistical noise and of global, coherent correlations ( c ��C ij � �k k k
k�2

3

� ), and 

trimming to the 16 positions that show significant weights in the remaining eigenvectors 2 and 3.  The 16 
positions form two sectors, labeled red and blue.   
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Figure S12:  Sectors in the PAS (Per/Arnt/Sim) family of allosteric signaling modules. A, the SCA 
correlation matrix (

�
�Cij ) for an alignment of 1104 PAS domains (123 x 123 sequence positions), and B, the 

SCA matrix after removal of statistical noise and of global, coherent correlations ( c ��C ij � �k k k
k�2

3

� ), and 

trimming to the 27 positions that show significant weights in the remaining eigenvectors 2 and 3.  The 27 
positions form two sectors, labeled red and blue. 
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Figure S13:  Sectors in the SH2 family of protein interaction modules.  A, the SCA correlation matrix ( �Cij ) 
for an alignment of 582 SH2 domains (79 x 79 sequence positions), and B, the SCA matrix after removal of 

statistical noise and global, coherent correlations ( c ��C ij � �k k k
k�2

3

� ), and trimming to the 42 positions that 

show significant weights in eigenvectors 2 and 3.  The 42 positions comprise three sectors, labeled blue, red, 
and green. 
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Figure S14:  Sectors in the SH3 family of protein interaction modules.  A, the SCA correlation matrix ( �Cij ) 
for an alignment of 492 SH3 domains (52 x 52 sequence positions), and B, the SCA matrix after removal of 
statistical noise and global, coherent correlations ( c ��C ij � �2 2 2 ), and trimming to the 11 positions that 
show significant weights in eigenvector 2.  The 11 positions comprise two sectors, labeled blue and red. 


