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Evolution of sparsity and modularity in a model of protein allostery
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The sequence of a protein is not only constrained by its physical and biochemical properties under current
selection, but also by features of its past evolutionary history. Understanding the extent and the form that these
evolutionary constraints may take is important to interpret the information in protein sequences. To study this
problem, we introduce a simple but physical model of protein evolution where selection targets allostery, the
functional coupling of distal sites on protein surfaces. This model shows how the geometrical organization of
couplings between amino acids within a protein structure can depend crucially on its evolutionary history. In
particular, two scenarios are found to generate a spatial concentration of functional constraints: high mutation
rates and fluctuating selective pressures. This second scenario offers a plausible explanation for the high tolerance
of natural proteins to mutations and for the spatial organization of their least tolerant amino acids, as revealed by
sequence analysis and mutagenesis experiments. It also implies a faculty to adapt to new selective pressures that
is consistent with observations. The model illustrates how several independent functional modules may emerge
within the same protein structure, depending on the nature of past environmental fluctuations. Our model thus
relates the evolutionary history of proteins to the geometry of their functional constraints, with implications for
decoding and engineering protein sequences.
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I. INTRODUCTION

Natural proteins are well known to be highly tolerant
to point mutations: most of the amino acids forming their
sequence can be changed without affecting notably their
biochemical properties [1]. Statistical analysis of protein
sequences, which study mutational patterns over large data sets
of natural protein sequences [2], and saturated mutagenesis
experiments, which assay every single mutation on a particular
protein [3], are now revealing the spatial architecture of this
robustness: in several proteins, the amino acids most essential
to the function have been found to be organized in small,
structurally connected clusters of interacting and coevolving
residues, called protein sectors [4].

For instance, in PDZ domains, a family of small interaction
domains that are often part of larger protein complexes, a sector
connects the ligand binding pocket to an opposite surface site
[2,3]. An interaction with another protein at the same surface
site has been shown to control the affinity of the ligand at the
binding pocket [5], leading to the hypothesis that the sector
serves to transmit information between the two sites. Such a
regulation of one site on the protein by another, distant site
is called “allostery” [6]. Similar sectors have been found and
experimentally investigated in other proteins, where they also
consist of small structurally connected subsets of residues and,
in many cases, mediate allostery [7–9]. Furthermore, several
quasi-independent sectors have been reported to coexist within
the same protein domain [4].

The generality of the concept of protein sector will
require further work to be generally established, but the very
heterogeneous distribution of functional constraints within
a protein structure is indisputable. For instance, residues in
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the interior of protein structures systematically tend to be
evolutionarily more conserved. As these residues are in contact
with more other residues than those closer to the surface,
this observation may reflect a larger number of physical
constraints. More generally, the heterogeneous distribution
of functional constraints may be inherent to the physical
properties of proteins, including the functional properties for
which they were selected. For instance, when the function
involves binding to a ligand, the residues structurally closer to
the ligand may be expected to be functionally more important.
We shall show, however, that such structural heterogeneities
are not needed to explain a spatial concentration of functional
constraints within a protein structure. To this end, we introduce
below a simple mathematical model in which all “residues” are
a priori equivalent, but where a sparse sector can nevertheless
arise as a consequence of fluctuations during the evolutionary
process.

The role of evolutionary history in shaping biological
organizations has been discussed previously. In particular,
it has been studied in relation to “modularity,” the generic
decomposition of biological networks into subnetworks [10].
Explanations for the evolutionary origin of modularity broadly
fall in two classes [11]: first, those based on the combinatorial
properties of the process generating new variations, e.g.,
gene duplications and recombinations [12], and, second,
those invoking the history of selective pressures, notably the
particular structure of environmental fluctuations [13].

Proteins are modular at several levels. First, they may
be composed of several domains, which are subparts of a
protein that can fold independently into stable units [14].
The sequence of a multidomain protein thus consists of the
concatenation of the sequences of different domains. The
duplication, divergence, and recombination of these domains
is a major source of new proteins in evolution [15]. Second,
a given domain may itself be composed of one or several
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submodules called sectors [4]. These modules are structurally
connected, but, at variance with protein domains, the amino
acids of distinct sectors are entangled along the sequence
so that they cannot easily be combinatorially reassorted by
recombination; instead, selective pressures may play a more
dominant role in their formation and evolution.

In general, however, the variational and selective factors
are nonexclusive and may contribute jointly to the emergence
of modules [16]. Beyond the question of their origin, the
implications of modular architectures for future evolution
have also been extensively studied in terms of resilience to
mutations, or “robustness,” and in terms of faculty to adapt,
or “evolvability” [17], two properties found to have a complex
relationship [18–20].

The presence of a single sector in the network of interacting
residues forming the structure of a protein, which typically
comprises only ∼20% of the total number of amino acids,
corresponds to a degenerate form of modularity, better referred
to as “sparsity” [21]. Very generally, a network is said to
be sparse when only a small fraction of the possible links
between pairs of nodes is present; in the present context where
we consider the network of functional interactions between
residues, sparsity refers to the fact that only a small fraction of
the specific interactions between amino acids is essential for
the function of a protein.

We demonstrate, in the context of a physical model of
protein evolution, how sparsity generically emerges in the
form of a spatial concentration of functional constraints from
fluctuations during the evolutionary process. These fluctua-
tions may involve variational or selective factors and may
promote robustness and/or evolvability to varying degrees.
The phenomenon that we describe is more elementary than
the evolution of modularity, which arises when the fluctuations
have some additional structure, in relation to the structure of
the function itself.

II. A MODEL FOR THE EVOLUTION OF ALLOSTERY

A. Physical model

To illustrate the role of evolutionary history in a context
where structural heterogeneities are minimized, we introduce
a model defined on a regular structure and consider an allosteric
property, which may in principle involve the entire structure.
In the spirit of previous theoretical studies of protein evolution
[22], we present this model in the generic framework of spin
glasses [23], but the Gaussian spin glass [24] that we analyze
more specifically is also closely related to models of elastic
networks commonly used to study protein dynamics [25].

We may derive our model starting from a general expression
for the energy of a protein,

E = −
∑

i

K0(ai,σi ,ε(ri)) −
∑

i

K1(ai,ai+1,σi ,σi+1)

−
∑

i,j

K2(ai,aj ,ri,rj ,σi ,σj ), (1)

where ai indicates the amino acid at position i along the
chain, ri its mean position, e.g., of its alpha carbon, and σi

its physical state, e.g., its orientation and fluctuations around

the mean position. The term K0(ai,σi ,ε(ri)) represents an
interaction energy between the amino acid ai and its local
environment ε(ri), which may include the solvent and/or the
amino acids of another protein, K1(ai,ai+1,σi ,σi+1) represents
the bonding energy between successive amino acids along the
chain, and K2(ai,aj ,ri,rj ,σi ,σj ) the interactions of residues
far apart along the chain but brought together upon folding.

While others have studied the incidence of evolutionary
parameters on protein structure and stability [26,27], we focus
here on the evolution of amino-acid specific variables in
the context of a fixed structure, to analyze the structural
organization of functional constraints in members of a protein
family sharing a common fold. We thus fix the ri at the
nodes of a lattice, where only nearest neighbors have nonzero
interactions. For simplicity, and to minimize structural hetero-
geneities, we ignore in this context the distinction between
bond and nonbond energies, so that

E = −
∑

⟨i,j⟩
K(ai,aj ,σi ,σj ) −

∑

i

K0(ai,σi ,ε(ri)), (2)

where ⟨i,j ⟩ indicates neighboring sites on the lattice (neigh-
borhood relationships thus define the range of the interactions).

We further assume that the σi take real values and that
K has the form K(ai,aj ,σi ,σj ) = J (ai,aj )σiσj . Similarly, we
assume that the environment around i is represented by a real
number hi with K0 of the form K0(ai,σi ,ε(ri)) = hiσi (more
generally, hi could depend on ai). We thus arrive at an energy
of the form

E(σ |J,h) = −
∑

⟨i,j⟩
Jijσiσj −

∑

i

hiσi , (3)

which is formally the energy of a spin glass [28], where spins
σi interact in the context of given (quenched) couplings Jij =
J (ai,aj ) and fields hi .

More specifically, we shall consider a Gaussian spin glass
model, defined at inverse temperature β by the partition
function [24]

Z(J,h) =
∫ ∏

i

e−σ 2
i /2

√
2π

dσi e−βE(σ |J,h), (4)

where the energy E(σ |J,h) given by Eq. (3) can also be written
as E(σ |J,h) = − 1

2σ⊤Jσ − h⊤σ , with σ representing a vector
σ = (σ1 . . . ,σM ) and with the geometry of the lattice defined
by the nonzero elements of the matrix Jij (with Jii = 0 and
Jij = Jji). This model is defined only at high temperature
since the integral diverges for large β, but if c denotes the
maximal connectivity of the lattice, it is sufficient to assume
that |βhi |,|βJij | < 1/c for the integral to converge.

The simplifications leading to the Gaussian spin glass
model are drastic but retain the essential relationships between
the variables of the problem: the couplings Jij , which may be
subject to evolution, the environmental variables hi , which
may vary with time, and the physical variables σi , which are
subject to short-range interactions constrained by the overall
structure and are dependent on the identity of the amino acids
and on the environment. The model may also be viewed as an
elastic network model [25] with a single degree of freedom per
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site and nonuniform “spring constants.” Remarkably, despite
their extreme simplicity, elastic network models are known to
capture some of the functional properties of natural proteins
[29].

The Gaussian model is analytically solvable, with

Z(J,h) = [det(I − βJ )]−1/2 exp
[
β2

2
h⊤(I − βJ )−1h

]
,

(5)

where I represents the M × M identity matrix, M being the
number of nodes in the lattice. Its free energy F (J,h) =
−β−1 ln Z(J,h) therefore has the form

F (J,h) = − 1
2β h⊤(I − βJ )−1h + F (J,0), (6)

where F (J,0) does not depend on h. This expression allows us
to calculate a free energy of binding with an external ligand: the
presence of a ligand corresponds indeed to a field h′ differing
from the field h in its absence, so a binding free energy is
obtained as the difference F (J,h′) − F (J,h). On the other
hand, we can also calculate the difference of free energy due
to mutations, whose effect is to change J into J ′, as F (J ′,h) −
F (J,h).

Here we consider a cylindrical lattice where two different
ligands can bind at the two opposite open ends [Fig. 1(a)].
The cylindrical lattice is chosen because its regular shape

(a)

(b)

FIG. 1. (Color online) (a) A model of protein allostery is defined
as a spin glass on a cylindrical lattice, a geometry chosen because
of its structural homogeneity. In this model, spins σi are on the
nodes to represent physical variables, and couplings Jij are on the
edges to represent interactions between these variables. These Jij

are subject to evolution. Interactions with a modulator m and/or
a ligand ℓ are modeled by fields hi applied to the sites i at the
open ends of the cylinder. Allostery is quantified by φ(J,ℓ,m), the
difference between the binding free energy of ℓ in the presence of
m, 'F (J,ℓ|m), and in its absence, 'F (J,ℓ|0). (b) The sequences of
the modulator and ligand are defined by the values and signs of the
fields hi , with hi = 0 representing an interaction with the solvent.
Evolution is performed over a population of systems with selection
for allosteric efficiency and with mutations affecting the couplings
Jij at a rate µ. A given generation is selected for allostery with given
ℓ,m, but when the environment fluctuates, different generations may
experience different ℓ,m. By symmetry, varying ℓ or m is equivalent,
and we fix the sequence of the ligand to hi = +1 for all i at the
bottom of the cylinder when ℓ is present and vary only the sequence
of the modulator every τ/2 generations, between hi = +1 for i at
the top (m = +) and hi = −1 (m = −). Modulators or ligands with
nonuniform sequences also can be considered as in Fig. 9.

represents the least favorable geometry for the emergence
of structural heterogeneities. We quantify the preferential
binding of one of the ligands in the presence of the other,
which corresponds to allosteric regulation [6]. Following the
terminology used for allosteric proteins, we call “regulatory
site” (abbreviated in “reg”) the upper end of the cylinder,
“modulator” the ligand binding to it, “active site” (“act”) its
lower end, and “endogenous ligand” the ligand binding to it.
Taking the interaction of site i with the solvent to correspond
to hi = 0, we thus have

E(σ |J,h) = −
∑

⟨i,j⟩
Jijσiσj −

∑

i∈reg

h
reg
i σi −

∑

i∈act

hact
i σi , (7)

where h
reg
i = mi in the presence of a modulator characterized

by the vector mi (i ∈ reg), hreg
i = 0 in its absence, and hact

i = ℓi

in the presence of an endogenous ligand characterized by the
vector ℓi (i ∈ act), hact

i = 0 in its absence.
Allostery corresponds to a more favorable interaction with

a ligand ℓ in the presence of a modulator m. It is quantified
thermodynamically in terms of free energy differences [30],
as

φ(J,ℓ,m) = 'F (J,ℓ|0) − 'F (J,ℓ|m), (8)

where 'F (J,ℓ|0) ≡ F (J,hact = ℓ,hreg = 0) − F (J,hact =
0,hreg = 0) represents the binding free energy of ℓ in
absence of m, and 'F (J,ℓ|m) ≡ F (J,hact = ℓ,hreg =
m) − F (J,hact = 0,hreg = m) in its presence, as illustrated
in Fig. 1(a) (these definitions are for a given J , representing
a given sequence of amino acids). In the context of our
Gaussian model, using Eq. (6) leads to an explicit expression
for allosteric efficiency,

φ(J,ℓ,m) = β m⊤[(I − βJ )−1]reg,act ℓ, (9)

where [A]reg,act denotes a submatrix of Aij where i is restricted
to i ∈ reg and j to j ∈ act.

B. Evolutionary dynamics

To study how allostery may be implemented through evo-
lution, we perform numerical simulations of an evolutionary
dynamics using a standard genetic algorithm [31]. We start
with a large population of P = 500 systems, with random
couplings defined on 10 × 10 square lattices, and repeat cycles
of selection, reproduction, and mutation for a large number
(5 × 104) of generations. Selection and reproduction are based
on allosteric efficiency, as defined by Eq. (8), with systems
with larger allosteric efficiency generating more offspring.
Specifically, a system k with couplings J

(k)
ij is replicated nk

times based on the value of φk = φ(J (k),ℓ,m), following the
sigma-scaling rule [31], nk = 1 + (φk − φ)/(2σ 2

φ ), where φ

and σ 2
φ are, respectively, the mean and variance of φ in the

population. This particular relation between nk and φk is
convenient, but its particular form is not determining: what
is essential is that larger values of φk imply larger values of
nk; we verified, for instance, that an elite strategy, which is
another standard rule used with genetic algorithms [31], has
equivalent implications.
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Mutations of the amino acids correspond to changes of the
couplings; for simplicity, instead of introducing an arbitrary
matrix J (a,b), we assume that a mutation randomly changes
the value of a single coupling Jij = J (ai,aj ) at a rate µ
per generation, independently of the other couplings: more
precisely, each coupling Jij has a probability µ to be mutated
to a random value in [−1,1] [in what follows, we fix the inverse
temperature to β = 0.1 so that the integral in Eq. (4) is always
well defined]. We verified, however, that explicitly mutating
amino acids at the level of sites, which affect simultaneously
several couplings, led to similar results.

Numerical simulations of evolutionary dynamics are gener-
ally limited by the computational cost of estimating the fitness
of each individual. The Gaussian model, which is analytically
solvable, is thus particularly well suited to an evolutionary
analysis: it allows us to perform efficient calculations in the
context of an arbitrary geometry.

III. EVOLUTIONARY CONCENTRATION OF
FUNCTIONAL CONSTRAINTS

A. Sparsity

The outcome of the evolutionary dynamics is contingent
on the series of modulator and ligand sequences that the
successive generations encounter [Fig. 1(b)]. When these
sequences are constant over time, say, m = (+1, . . . ,+1)
and ℓ = (+1, . . . ,+1) at all times, systems evolve maximal
couplings |Jij | ≃ 1 at all sites. This implementation of the
couplings optimizes the allosteric efficiency φ and epitomizes
an absence of sparsity. Repeating the same simulations with
a modulator that alternates with period τ between two
sequences, m = (+1, . . . ,+1) and m = (−1, . . . ,−1), yields
a qualitatively different outcome: the smaller τ is, the fewer
are the large couplings, as illustrated in Fig. 2(a).

Allostery requires strong couplings, but not all strong
couplings need to be functionally significant: if a strong
coupling is defined by |Jij | > 0.8 as in Fig. 2(a), we may
expect ∼20% of strong couplings even in absence of any
selection, only because the Jij are mutated to random values
in [−1,1] (0.8 is an arbitrary cutoff but other values lead to a
similar conclusion; see Fig. 3).

As a more relevant measure of functional significance, we
may consider instead the “fitness cost” δφij that a mutation of
Jij can cause to the allosteric efficiency φ. To compare systems
with different allosteric efficiencies, we define here the relative
fitness cost of a mutation Jij → J ∗

ij as δφ∗
ij (J ) ≡ [φ(J ) −

φ(J (∗))]/φ(J ), where J (∗) differs from J by the value of Jij .
Figure 2(b) shows the result of retaining only the couplings
with largest effect when mutated, with δφij > 0.1 (other
choices of this cutoff yield similar results; see Fig. 3). This
criterion, closer to what has been experimentally measured
[3], reveals distinctly the presence of a connected subset of
functional couplings joining the regulatory and active sites.

The subsets of functionally significant couplings shown in
Fig. 2(b), which break the rotational invariance of the cylinder
and whose locations vary from simulation to simulation, dis-
play several features reminiscent of protein sectors observed
in natural proteins [2,4]: (i) they are overall structurally con-
nected [Fig. 2(b)]; (ii) they have a hierarchical organization:

(a)

(b)

(c)

FIG. 2. (Color online) Examples of systems obtained from an
evolutionary dynamics with mutation rate µ = 5 × 10−5 and different
periods τ of fluctuations of selective pressure (τ = 200,400,1000).
(a) Couplings Jij with large absolute values, |Jij | > 0.8. (b) Cou-
plings Jij inducing a large loss in allosteric efficiency when mutated,
δφij > 0.1 (see Fig. 3 for other values of the cutoffs). The figures
display the fittest individual in a population of P = 500 individuals
prior to a change of environment. (c) Sparsity of evolved systems as
a function of the period τ of environmental changes, where sparsity
is defined as the fraction of nonrepresented couplings in (b). The
error-bars (standard deviations over 10 simulations) are smaller than
the marker.

less significant couplings are peripheral to more significant
ones, as shown by varying the value of the cutoff defining
functional significance (Fig. 3); (iii) they are evolutionarily
conserved: their location is stable over multiple periods along
a given evolutionary trajectory (Fig. 4); (iv) their couplings

(a)

(b)

FIG. 3. (Color online) For the system associated with τ = 200 in
Fig. 2, couplings |Jij | and functional constraints δφij above different
values of the cutoffs (Fig. 2 corresponds to the middle column, |Jij | >

0.8 and δφij > 0.1).
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FIG. 4. (Color online) Overlap between functionally significant
couplings (δφij > 0.1) between a system at generation t0 and a system
at generation t0 + t along a same evolutionary trajectory as a function
of the number of generations (time), counted in number of periods
τ (the error bars are standard deviations over 100 simulations). The
locations of the sectors shown in Fig. 2(b) are found to be stable over
multiple periods of environmental changes.

are coevolving, as shown by a statistical analysis of “multiple
sequence alignments” obtained from independent evolutionary
trajectories with a common origin (Fig. 5).

As indicated by Fig. 2(b), the smaller the period τ of the
fluctuations in selective pressure, the smaller the sector. The
temporal structure of past selective objectives is thus encoded
geometrically in the couplings. More precisely, we may define
the sparsity of a system as the fraction S of its couplings
Jij with δφij < 0.1 [the fraction of nonrepresented couplings
in Fig. 2(b)]. Sparsity thus represents the fraction of neutral
couplings, whose mutation has only a minor effect on the
function. It is represented as a function of the period τ in
Fig. 2(c) and as a function of τ and the mutation rate µ in

(a) (b) (c)

FIG. 5. (Color online) Analysis of coevolution. To generate a
data set of phylogenetically related systems analogous to the
alignments of protein families used to infer sectors from protein
sequences [4], we start from a population obtained by evolution
under fluctuating selective pressures and then generate independent
trajectories, under the same evolutionary parameters. (a) A system
from the initial population, here obtained with τ = 200 and µ =
5 × 10−5, represented as Fig. 2(b). (b) Matrix of covariance between
couplings, Cij,kl = |⟨Jij Jkl⟩ − ⟨Jij ⟩⟨Jkl⟩|, computed from the results
of 100 independent trajectories run over 3τ = 600 generations for the
same values of the parameters µ,τ ; ⟨. . .⟩ denotes an average over the
different populations (the absolute value is taken to treat equivalently
positive and negative covariations). The couplings are ordered based
on the first eigenvector (principal component) of the matrix. (c) The
top positions along this principal component define a sector, which
overlaps with the sector defined in (a) for the original system.

(a)

(b)

FIG. 6. (Color online) (a) Sparsity of evolved proteins as a
function of the mutation rate µ and the period τ of fluctuating selective
pressures. Sparsity is defined as the fraction of couplings with
δφij < 0.1 [nonrepresented couplings in Fig. 2(b)]. Below the dashed
line, the environmental fluctuations are too fast for the population
to follow them, and the systems are nonadapted (region na). Sparse
systems are found in two ranges of parameters: for intermediate values
of µτ , where they are driven by fluctuating selective pressures (region
F , including the three systems of Fig. 2 indicated by crosses), and
for high values of µ, where they are driven by a large mutational
load (region M). (b) Fitness of the population as a function of µ and
τ ; the axis and the red line are the same as in (a). The dashed line
(φ = 10−7) corresponds to the typical maximal value of allosteric
efficiency in populations of P = 500 random systems. Below this
line, the populations may be considered as nonadapted.

Fig. 6(a). For low enough mutation rates (see below), it scales
with µτ , the number of mutations per period; more precisely, it
scales with µτP , the total number of mutations in a population
of size P (Fig. 7).

Sparsity arises at the expense of instantaneous fitness,
here defined by the allosteric efficiency φ [Fig. 6(b)], but
it favors the “evolvability” [18] of the population, which
can be quantified as the fraction of random mutations
conferring a noticeable fitness advantage following a change of
selective pressure: E(J |h′) = ⟨θ (δφ∗

ij > ϵ)⟩ij,∗, where ⟨.⟩ij,∗
is an average over the pairs ij and over the possible values
of Jij , θ (x) = 1 if x > 0, 0 otherwise, and ϵ is an arbitrary
cutoff [ϵ = 0.2 in Fig. 8(a)]. The evolution of sparsity also
implies an increased mutational “robustness” [32], defined
as the fraction of mutations that do not affect noticeably
the fitness: R(J |h) = ⟨θ (δφ∗

ij < ϵ′)⟩ij,∗ where ϵ′ is again an
arbitrary cutoff [ϵ′ = 0.01 in Fig. 8(b)]. The definition of
E(J |h′) differ from the definition of R(J |h) by the field h′,

042704-5



MATHIEU HEMERY AND OLIVIER RIVOIRE PHYSICAL REVIEW E 91, 042704 (2015)

FIG. 7. (Color online) Sparsity as a function of the scaling
variable τµP for systems obtained from evolutionary dynamics
with different values of the period τ of environmental changes and
mutation rate µ (in the range of values shown in Fig. 6) and for two
population sizes, P = 100, 500.

which is distinct from the field h in which the system most
recently evolved: when considering an environment alternating
periodically between two values h(1) and h(2), we thus take the
systems at the end of a period of constant selective pressure
under h(1) and define robustness as R(J |h(1)) and evolvability
as E(J |h(2)).

The period τ is not the only feature of the environmental
fluctuations that affects the size of a sector: so does the
diversity of these fluctuations. For a given τ , the sparsity
thus decreases with the sequence similarity between the two
alternating modulators [Fig. 9(a)]. But while the similarity
between successive modulators is determining, their exact
sequence is not: replacing the sequences m = (+1, . . . , + 1)
and m = (−1, . . . ,−1) by arbitrary sequences of ±1, or even
imposing new randomly chosen modulators at each period,
does not affect significantly the outcome. This observation

(b)

(a)

FIG. 8. (Color online) (a) Robustness of evolved systems as a
function of the period τ of environmental changes. (b) Evolvability.
The error bars are standard deviations over 10 simulations.

illustrates a capacity of “generalization” [33]: the sparse
systems, which are more prompt to readapt to a modulator
previously encountered in their history, are as prompt to adapt
to a modulator never encountered.

Another factor can induce the formation of a sector: a large
mutational load. While for small mutations rates µ the sparsity
is controlled by the dimensionless parameters µτ , for large
mutation rates it is controlled by µ nearly independently of τ
[Fig. 6(a)]. The critical value of the mutation rate, µc ∼ N−1,
corresponds to the “error threshold” for a system of size N
(here the total number of links ij ), i.e., to the maximal mutation
rate at which a system of this size can faithfully replicate [34].
For µ > µc, the systems thus evolve a sector of size ∼(µN )−1,
which is the largest size allowed by the mutational load.

B. Localization in sequence space

Functional proteins represent only a tenuous subset of all
potential proteins [35]. In our model, we find that within
this subset, proteins with a sparse sector are themselves rare:
typical systems with a given fitness φ are significantly less
sparse than systems with the same fitness but resulting from
an evolution in fluctuating environments [Fig. 10(a)]. This
observation implies that sparsity in the evolved systems is not
just a consequence of the fitness being curbed by the envi-
ronmental fluctuations. The sparse systems are, furthermore,
not distributed randomly in sequence space, but localized in
evolvable regions of this space: they are at shorter mutational
distance to solutions to alternative selective pressures, where

(a)

(b)

FIG. 9. (a) Sparsity as a function of the sequence similarity s

between the two alternative modulator sequences, for µ = 10−5

and τ = 100 (mean and standard deviation over 10 simulations).
(b) Minimal number of point mutations necessary to adapt to a
new random modulator as a function of sparsity. The simulations
are obtained with different values of τ ∈ [10, . . . ,5000] and µ ∈
[5 × 10−3, . . . ,2 × 10−6] corresponding to adapted populations (φ >

10−7); the results are averages over five random modulators.
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(a)

(b)

FIG. 10. (Color online) (a) Sparsity as a function of allosteric
efficiency (fitness) for evolved systems obtained with various µ <

10−2 and τ > 10 (blue diamond) and for typical systems with same
fitness obtained by Monte Carlo sampling (red circle). (b) Distance to
a system with different function (i.e., allostery induced by a modulator
m′ different from the one m for which the system was last selected),
measured by the minimal number of beneficial mutations needed
to reach an equivalent allosteric efficiency after the change m →
m′, for evolved systems (blue diamond) and typical systems (red
circle). Systems evolved in a fluctuating environment are thus atypical
amongst systems with equivalent fitness value for being sparser and
closer to solutions to new selective challenges.

the distance to an alternative selective pressure h′ ̸= h is
estimated as the number of steps necessary for a hill-climbing
algorithm, whereby a single coupling Jij can be changed at
each step, to reach a fitness value φ(J ′|h′) at least equivalent
to the initial value φ(J |h) [Fig. 10(b)]. This phenomenon of
localization is generic and has been illustrated previously in
the context of fitness landscapes defined on small, schematic
sequence spaces [36,37].

Our model, however, displays two features absent from
simpler models. First, it relates the topology of the fitness
landscape, defined in sequence space, to the geometry of
the functional constraints, defined in real space: gradients in
fitness thus corresponds to sector positions where adaptive
mutations occur, while plateaus in fitness corresponds to
positions out of the sector where mutations are almost neutrals.

Second, as is typical to high-dimensional spaces, the results are
partly nonintuitive: a system localized between two alternating
fitness peaks is ipso facto localized near a large family of
related fitness peaks [Fig. 10(b)], a feature that underlies
the faculty of generalization [33], or “promiscuity” [38],
previously noted.

C. Modularity

The concentration of functional constraints may take differ-
ent geometrical forms depending on the structure of the evolu-
tionary fluctuations. In particular, distinct quasi-independent
sectors may evolve instead of a single connected sector. A com-
binatorial process for generating new variations, involving,
for instance, gene duplications, recombination events, and/or
horizontal transfers, has been shown to produce modular
organizations [12]. Such combinatorial variations may explain
the modular organization of proteins into domains, which are
subsequences of consecutive amino acids, but cannot easily
account for the presence of multiple quasi-independent sectors
distributed along the sequence of a single domain [4]. A
scenario implicating modularly varying selective pressures
provides an alternative explanation, as previously illustrated
in a range of different models [13,33,39].

Consistently with these past works, we find that a modularly
varying environment favors the emergence of two distinct
sectors in an extension of our model where allostery involves
two modulators. In this model, the two modulators m1, m2 can
bind at two distinct regulatory sites (Fig. 11), and selection
is for preferential binding of the ligand ℓ in the presence of
at least one of them (nonexclusive OR). This corresponds to
selecting with a fitness φ = min(φ1,φ2), where the allosteric
efficiencies φ1 and φ2 are defined by Eq. (8) with, respectively,
m = (m1,0) and m = (0,m2).

When both the sequences of m1 and m2 fluctuate in
time, evolution stochastically generates one of two possible
outcomes: systems with a single sector, as in Fig. 11(a), or
with two separate sectors, as in Fig. 11(b). The probability to
obtain two sectors depends on the structure of the fluctuations
(besides the size of the structure): it is significantly larger when
m1 and m2 change modularly, i.e., one at a time, compared to
when they change nonmodularly, i.e., simultaneously (table
in Fig. 11).

We note that, in contrast with previous models reporting
similar effects [13,33,39], sparsity is not enforced in the
definition of the fitness, but obtained as a result of evolution.
We also find that a rugged fitness landscape is not necessary
for modularity to emerge spontaneously [16]: in our model,
solutions are indeed always accessible by hill-climbing with
one-step mutations [Fig. 10(b)].

IV. DISCUSSION

Interpreting the information contained in the sequence
of a protein requires considering, in addition to the bio-
physical properties of the protein, its evolutionary history.
Our simple model of protein evolution thus demonstrates
how a basic feature of proteins, the spatial organization of
their residues least tolerant to mutations, may be controlled
by past fluctuations of selective pressure or high mutation
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(a) (b)

FIG. 11. (Color online) Typical outcomes for a variant of the
model where the regulatory site is partitioned into two subsites,
each associated with an independently varying modulator, and where
selection is on allostery in the presence of at least one of the two
modulators m1 and/or m2. Shown are the couplings with δφij > 0.1
as in Fig. 2(b). (a) A nonmodular system, with a single sector
localized at the interface between the two regulatory sites. (b) A
modular system, with two distinct sectors. These two systems are the
(stable) outcomes of two distinct evolutionary trajectories with same
evolutionary parameters (τ = 100, µ = 5 × 10−4). The difference
stems only from stochastic effects. The table indicates the probability
to obtain a modular system for two values of the period τ and for
m1,m2 varying either simultaneously or consecutively [49].

rates. Our conclusions are based on comparing scenarios that
differ only in two evolutionary parameters: the period τ of
environmental fluctuations and the mutation rate µ. Since a
structural concentration of functional constraints arises only
for some values of these parameters, it is clearly not a necessary
consequence of the definition of our model.

We expect that comparable results hold for other systems
where internal variables varying on a short time scale are
subject to short range interactions controlled by evolutionary
and environmental variables varying on longer time scales.
In less idealized systems, including natural proteins, several
additional factors may, however, contribute to a concentration
of functional constraints.

Irregular structures thus typically contain preferred al-
losteric paths that tend to reinforce the concentration of
functional constraints: with no unique shortest path between its
two interfaces, the cylindrical structure allowed us to illustrate
the role of evolutionary factors with minimal contribution from
structural heterogeneities. Our approach, however, extends to
other geometries.

Similarly, our results are robust to variations in the
implementation of the evolutionary dynamics (Fig. 12), but
alternative choices may reduce or enhance sparsity [40]. In our
model, all coupling values are a priori equiprobable, showing
that such a mutational bias is not required.

Sparsity may also be favored by factors limiting the
efficiency of selection. The typically nonlinear relationship
between the biophysical properties of a protein and the

reproductive rate (fitness) of organisms may thus make the
contribution of all couplings unnecessary. Finite population
size effects also generically exclude a complete “optimization”
of the couplings.

Our model represents an ideal case where, under constant
environment, all the couplings may be equivalently involved
in the function (the only a priori difference being between
vertical and horizontal couplings). In the generic case where
a uniform distribution of the couplings is intrinsically nonop-
timal, evolutionary fluctuations may, nevertheless, control the
degree of concentration of functional constraints if they are
sufficiently large.

Many extensions of our model are conceivable. Negative
selection against undesired modulators and ligands may, for
example, allow us to account for the specificity of the inter-
actions. The assumption of a fixed geometry of interactions
may also be relaxed to permit a joint treatment of folding
and functional constraints, in line with previous studies based
on similar simplified protein models [41–43]. Extending our
model to account for structural changes and kinetic effects
may thus contribute to rationalize the diversity of mechanisms
that evolved to cause allostery [44].

Our model is not intended to account quantitatively for the
features of natural proteins. Nevertheless, given the typical
size N ∼ 102 and mutations rates µ ∼ 10−9 per base per
generation of current nonviral proteins, we may exclude a
scenario based on high mutation rates for explaining the
high tolerance of proteins to mutations. On the other hand,
estimates of µP based on silent genomic variations within
species give µP ∼ 10−1–10−3 for a range of organisms [45],
where P represents an effective population size. This indicates
that relevant time scales of fluctuating selective pressures are
of the order of τ ∼ (µP )−1 ∼ 10–1000 generations; these
estimations are crude but lend weight to the plausibility of
a scenario based on environmental fluctuations. Differences
of variability in past selective pressures may thus cause
different proteins to have fundamentally different architectures
of functional constraints.

While our limited knowledge of past evolutionary history
prevents us from testing quantitatively these ideas with
natural proteins, progress in the field of directed evolution
[46–48] may soon offer us a platform to investigate them
by performing experiments of evolution under temporally
varying selective pressures.

ACKNOWLEDGMENTS

We thank A. Dawid, D. Hekstra, B. Houchmandzadeh, I.
Junier, S. Leibler, C. Nizak, K. Reynolds, A. Raman, and R.
Ranganathan for discussions and comments. This work was
supported by ANR grant CoevolInterProt.

APPENDIX

1. Different modulators

In the main text, we present results when alternating be-
tween two opposite modulator sequences, m(1) = (+, . . . ,+)
and m(2) = (−, . . . ,−). Any other choice of two opposite
modulators with m

(1)
i = −m

(2)
i for all i ∈ act gives identical

results as a consequence of the “gauge invariance”: σi /→ −σi

⇔ Jij /→ −Jij ∀j . When alternating between two modulators
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(c) (d)

(a) (b)

FIG. 12. (Color online) Sparsity as a function of the time scale τ

of environmental changes for systems that evolved subject to different
mutational processes: (a) Identical to Fig. 2(c): the Jij are mutated
to a random value uniformly distributed in [−1,1], independently of
their previous value. (b) The Jij are drawn from a finite set of discrete
values. (c) Sum rule with variance σ 2

s = 0.2. (d) Product rule with
variance σ 2

p = 1.6. In each case, the sparsity tends to decrease with
increasing values of the period τ of the environmental changes.

m(1) and m(2) with m
(1)
i = ±1, m

(2)
i = ±1 and sequence

similarity s =
∑

i δ(m1
i ,m

2
i ), the sparsity is commensurate

with this measure of similarity [Fig. 9(a)], thus interpolating
between the case s = M = 10, which is equivalent to a
constant environment, and the case s = 0, which corresponds
to opposite modulators.

Sparsity implies a closer mutational distance to solutions
to selective pressures previously encountered in evolutionary
history [Fig. 10(b)], but also to new (although related) selective
pressures, as illustrated in Fig. 9(b) where evolved systems are
challenged with random sequences of the modulator.

2. Alternative mutational processes

The results presented in the main text are obtained with
memoryless mutations, consisting in drawing a new value
for Jij uniformly at random in [−1,1], independently of
its previous value. Among other possible choices, we may
consider (i) discrete couplings, taken at random in a finite set
of values, ±{0,0.01,0.02,0.05,0.1,0.2,0.5,1}; (ii) a sum rule,
where each mutation adds to the current value a normally
distributed random variable: Jij → J ∗

ij = Jij + N (0,σ 2
s ); and

(iii) a product rule, where each mutation multiplies the current
value by a Gaussian variable: Jij → J ∗

ij = Jij × N (0,σ 2
p).

We implemented these rules by mapping values J ∗
ij > 1 to

J ∗
ij = 1 and values J ∗

ij < −1 to J ∗
ij = −1, to ensure that

the couplings remain bounded. The results are presented in
Fig. 12, showing that our conclusions are robust with respect
to the mutational process.
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