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SUMMARY
Protein structure, function, and evolution depend on local and collective epistatic interactions between
amino acids. A powerful approach to defining these interactions is to construct models of couplings between
amino acids that reproduce the empirical statistics (frequencies and correlations) observed in sequences
comprising a protein family. The top couplings are then interpreted. Here, we show that as currently imple-
mented, this inference unequally represents epistatic interactions, a problem that fundamentally arises from
limited sampling of sequences in the context of distinct scales at which epistasis occurs in proteins.We show
that these issues explain the ability of current approaches to predict tertiary contacts between amino acids
and the inability to obviously expose larger networks of functionally relevant, collectively evolving residues
called sectors. This work provides a necessary foundation for more deeply understanding and improving
evolution-based models of proteins.
INTRODUCTION

The basic characteristics of natural proteins are the ability to fold

into compact three-dimensional structures, to carry out chemi-

cal reactions, and to adapt as conditions of selection fluctuate.

To understand how these properties are encoded in the amino

acid sequence, a powerful approach is statistical inference

from datasets of homologous sequences—the study of evolu-

tionary constraints on and between amino acids. In different

implementations, this approach has led to the successful predic-

tion of protein tertiary structure contacts,1–4 protein-protein

interactions,5–7 mutational effects,8–11 and even the design of

synthetic proteins that fold and function in a manner indistin-

guishable from their natural counterparts.12–14 A major result

from these studies is the sufficiency of pairwise correlations in

multiple sequence alignments (MSAs) to specify many key

aspects of proteins. This result motivates the search for statisti-

cal models of protein sequences that capture these correlations

as a route to understanding and designing proteins.

What characteristics underlie a ‘‘good’’ statistical model of

protein sequences? The native state of a protein represents a

fine balance of large opposing forces between atoms that oper-

ate with strong distance dependence to produce marginally sta-

ble structures. Thus, many complex and non-intuitive patterns of

interdependence between amino acids (epistasis) are possible,

all consistent with the compact, well-packed character of tertiary

structures. Indeed, many studies show that amino acids act

heterogeneously and cooperatively within proteins, producing
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epistasis between amino acids on vastly different scales. At

one level, there are local, pairwise interactions that define direct

contacts in the tertiary structure. But, at another level, there are

collectively acting networks of amino acids that mediate

folding13,15,16 and central aspects of protein function—bind-

ing,17 catalysis,18 and allosteric communication.19 Past work

show that both scales are represented in the pattern of empirical

correlations in MSAs20,21 resulting in different sequence-based

methods for understanding protein structure22 and function.23

Thus, a basic requirement for statistical models of protein se-

quences is to account for both local and collective amino acid

epistasis.

A fundamental problem in making such models is the lack of a

ground truth for validating all features of the inference process.

For example, local epistasis can be verified by direct contacts

in atomic structures of members of a protein family,1–4 but a

similar benchmark for global collective actions of amino acids

is not broadly available. Indeed, the inspiration for building statis-

tical models from evolutionary data is, in part, to provide hypoth-

eses for the collective behaviors of amino acids as a route to un-

derstanding protein function. How then can we better

understand the inference process itself? In this work, we take

the approach of using ‘‘toy models’’24–26 in which we (1) specify

a pattern of amino acid couplings for a hypothetical protein, (2)

generate synthetic sequences that satisfy those constraints,

and (3) examine the ability of statistical inference methods to

learn these patterns (Figures 1A and 1B). This analysis shows

that in practical contexts, model inference is systematically
Elsevier Inc.
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Figure 1. Inference in a toy model of proteins

The model assumes a sequence of length L = 20 with q = 10 possible amino acids at each position.

(A) The pattern of input couplings between sequence positions, in Frobenius norm form. There are three types of features: three isolated pairwise couplings

(‘‘contacts,’’ 2--5, 4--7, and 6--9), a small collective group (‘‘small sector,’’ all possible couplings within positions 11--14), and a large collective unit (‘‘large sector,’’

all possible couplings within positions 15--20). All non-zero couplings have the same magnitude, see text.

(B) The strategy used in this work, in which we make the input model (step 1), sample N sequences from a Boltzmann distribution defined by the input Jinpij ða;bÞ
and compute the empirical first and second order statistics fiðaÞ and fijða;bÞ (step 2), and use theDCA approach to infer back the input couplings from the sampled

sequences (step 3).

(C) Frobenius norm kCijk of the empirical correlation matrix Cijða;bÞ = fijða;bÞ � fiðaÞfjðbÞ computed from the sampled sequences, showing that the collective

groups are most strongly correlated.

(D) The inferred couplings with usual settings in DCA (regularization lJ = 10� 3). As described in the text, (A) and (D) show normalized couplings in the zero-sum

gauge kbJijk=J0.
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skewed, given limited sampling of sequences. The consequence

is that features of different size and strength are unevenly in-

ferred with current methods. These findings are confirmed in a

real protein model system in which experimental data allow us

to verify both structural contacts and functional amino acid net-

works. This work clarifies apparent inconsistencies in the current

interpretation of coevolution in proteins and opens a path toward

new methods for more completely inferring the information

content of protein sequences.
RESULTS

Inference from toy models
A generative statistical model of protein sequences is provided

by the direct coupling analysis (DCA),3,22 or more generally a

Markov random field. This method starts with a MSA of a protein

family comprised of N sequences by L positions, and makes the

assumption that each sequence s = ðs1;.; sLÞ is a sample from

a Boltzmann distribution of a Potts model:
PðsÞfexp

"X
i

hiðsiÞ+
X
i < j

Jijðsi; sjÞ
#

(Equation 1)

where hiðaÞ represents the intrinsic propensity of each amino

acid a to occur at each position i (the ‘‘fields’’), Jijða;bÞ represents
the constraints between amino acids a;b at pairs of positions i; j

(the ‘‘couplings’’), and PðsÞ is the probability of sequence s.

The parameters ðh; JÞ are inferred by maximum likelihood and

are related to the frequencies fiðaÞ and joint frequencies fijða;bÞ
of amino acids at positions i; j by the consistency equations

fiðaÞ =
X
s

PðsÞdðsi; aÞ

fijða;bÞ =
X
s

PðsÞdðsi; aÞdðsj;bÞ
(Equation 2)

where dðx; yÞ = 1 when x = y and zero otherwise. The probability

distribution PðsÞ can also be viewed as the maximum entropy

model that reproduces the empirical frequencies fiðaÞ and
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fijða;bÞ of the protein family.3 In practice, exact inference of the

parameters ðh; JÞ is computationally intractable because the

number of terms in Equation 2 is excessively large, but effective

approximations exist. In this work, we use pseudo-likelihood

maximization (plmDCA),27 but we show in the STAR Methods

that our results are not approximation dependent.

A critical fact is that in nearly every practical situation, the infer-

ence is carried out with very limited sampling. Typically, MSAs

may contain on the order of N = 103 � 105 sequences, which

often reduces to an even lower effective diversity due to phyloge-

netic relationships (Neff, see STAR Methods). This number of

sequences is usually not enough to provide sufficient sampling

of the many possible pairwise statistical observations fijða; bÞ.
This undersampling necessitates the use of statistical regulariza-

tion during the inference process to avoid overfitting. A standard

approach is the so-called L2 regularization, meaning that the log-

likelihood function is penalized by a term proportional to

the L2 norm of the parameters. The larger the regularization,

the more constrained the parameters. If the fields hiðaÞ and

the couplings Jijða;bÞ are regularized separately, this changes

the consistency equations to

fiðaÞ =
X
s

PðsÞdðsi; aÞ+ 2lhhiðaÞ

fijða;bÞ =
X
s

PðsÞdðsi; aÞdðsj;bÞ+ 2lJJijða;bÞ
(Equation 3)

where lh and lJ are the regularization parameters. How does one

choose these parameters? Because the inference is unsuper-

vised and cross-validation strategies cannot be applied, the

standard approach is to empirically set them by their ability to

predict protein properties of interest.9,28

One strategy to assess inference methods is to make use of

artificial data generated by a model for which the parameters

are known. For example, one can specify an initial model inferred

from real data, generate novel sequences from the model, and

attempt to re-infer the model from the sampled sequences.29

However, the use of a generative model as a benchmark cannot

address features of the real data that were mis-represented or

even omitted by choices made in the initial inference process.

To more formally study the influence of sample size and regu-

larization on the inference process, we made a toy model of a

hypothetical protein obeying Equation 1 with input parameters

ðhinp; JinpÞ, and asked whether these parameters can in fact be

inferred from sequences sampled from the model (Figure 1B).

The model comprises L = 20 positions and q = 10 possible

amino acids and has the following characteristics: all fields are

set to zero ðhinpi ðaÞ = 0Þ, and couplings Jinpij ða;bÞ have the

pattern shown in Figure 1A. There are three isolated pairwise

couplings at pairs of positions (2,5), (4,7), and (6,9), a medium-

sized interconnected group containing all possible couplings

between positions ð11--14Þ, and a larger-sized interconnected

group containing all possible couplings within positions

ð15--20Þ. The isolated pairwise couplings mirror the concept of

coevolving contacts in protein structures, whereas the intercon-

nected groups of couplings represent the concept of a coopera-

tively evolving group of positions (sectors). All non-zero

couplings have the same strength Jinp = 2. Wemade the choice

of setting fields to zero for simplicity but show in the STAR
212 Cell Systems 14, 210–219, March 15, 2023
Methods that adding fields leads to a lower effective alphabet

per position but does not alter the general conclusions of this

work regarding the effects of undersampling. Note that Jijða;bÞ
is a four-dimensional L3L3q3q array, but for presentation,

Figure 1A (and all such panels below) shows the L3L Frobenius

norm kJijk = ðPa;bJijða;bÞ2Þ1=2 (see STAR Methods). We also

normalize inferred parameters by the input Frobenius value in

the zero-sum gauge J0, so that perfect inference corresponds

to kbJijk=J0 = 1 for all non-zero couplings.

We used a Markov chain Monte Carlo sampling procedure to

draw an MSA of N = 300 independent sequences from the

model (Figure 1B, step 2), a number that mirrors the undersam-

pling observed in natural protein families. Figure 1C shows the

position by position magnitudes of correlations between amino

acids in the sampled sequences. The pattern is heterogeneous,

with stronger correlations within the larger interconnected

groups of positions. This is because the larger the group, the

more constraints exist on it to conform to the motif. In this

context, how does DCA work to infer the input couplings

Jijða;bÞ from the empirical statistics? With standard settings for

regularization ðlJ = 10� 3Þ, DCA emphasizes the isolated pair-

wise couplings, whereas the collective features are hardly

discernible relative to noise (Figure 1D).

Inference as a function of sample size
Why does DCA selectively emphasize the isolated couplings and

under-represent those that make up larger collective features?

The answer lies in examining the dependence of the inferred

couplings bJijða;bÞ on the degree of sampling in the MSA

(Figures 2A and 2B). The data in the weakly regularized Figure 2B

indicate that inferred couplings show three properties as a func-

tion of MSA size: (1) they exhibit a property where the value of

kbJijk sharply peaks at a characteristic MSA size, (2) they peak

at different characteristic MSA sizes depending on the size of

the group they belong to (non-interacting pairs, isolated pairs,

small collective, and large collective units), and (3) they only

approach their correct values (kcJijk=J0 = 1 for non-zero cou-

plings) at the limit of very large sampling (large sampling limit

shown in Figure S1I). This sharp peak is mitigated by regulariza-

tion, but persists even at realistic values (Figure 2A). At the MSA

size chosen in our example ðN = 300Þ, the isolated couplings

dominate the inference, with all collective features lower in

magnitude. Figure 2B also shows that if the MSA contained

more sequences, we could suppress the isolated pairwise

couplings and instead emphasize the collective features.

What is the mechanism of the peaking of inferred couplings as

a function of MSA size? To study this, we made an even simpler

model of just two positions, each with q possible amino acids

and with no fields or couplings; that is, with no constraints at

all. With infinite sampling, all correlations between amino acids

at the two positions must be zero and the inference will return

the correct result that all fields and couplings are zero. With finite

number of sequences, however, the inferred parameters ðbh; bJÞ
are generally non-zero. For example, consider the situation in

which we deterministically draw amino acid pairs uniquely and

without repetition to form an MSA of size N while keeping amino

acid frequencies at both sites uniform. IfN<q2, some amino acid

pairs will be observed and the rest ðq2 �NÞ will be absent,

requiring inferred couplings in the Potts model to be infinite to



Figure 2. Inference of model features as a function of MSA size

(A) Normalized magnitude of inferred couplings kbJijk=J0 as a function of MSA size, averaged for positions comprising the different sized features in the input

model (Figure 1A). The inference is carried out with the same regularization as in Figure 1D ðlJ = 10� 3Þ. Sharp increase in the smallest scale can be visible for low

sampling sizes. For this value of regularization, even full sampling will not reproduce the input value (kbJijk=J0 = 1 for all interacting position pairs and 0 otherwise).

(B) Same as (A) for a very small value of regularization ðlJ = 10� 6Þ, to demonstrate the unmitigated effect even more clearly. The data show that features in the

amino acid sequence display a sharp peak at characteristic levels of sampling in order of their effective size. Because we use this low value of regularization,

interactions of any size can reach their input values, but only at the limit of infinite sampling.

(C) Inferred couplings for an even simpler model of just L = 2 positions and q = 10 amino acids either without (black, Jinp = 0) or with Jinpx2:2 (red) input in-

teractions. The traces show cases of deterministic (solid) or random (dashed) sampling of sequences. As described in the text, this model provides a simple

mechanistic understanding of the origin of the peak property.
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account for the absences. The point of regularization is to

prevent such an outcome, constraining the difference between

the largest and smallest couplings ðDJÞ for the case of this

simplified model to satisfy DJ+ logDJ = log q2 �N
2N2lJ

, where lJ is

the regularization parameter. It is then easy to show that the

magnitude of couplings over all amino acid pairs will be unimo-

dal, with a maximum at the point where the sampling produces

the same number of observed and missing pairs—that is,

when N = q2=2 (Figure 2C, solid black curve, and see STAR

Methods for derivation). The true value of the interaction

ðJ = 0Þ is only reached with complete sampling ðN [q2Þ.
This shows the basic mechanism of the peaking—a sampling-

dependent maximization of inferred couplings with a magnitude

that is simply set by the strength of regularization.

Generalizing to include a non-zero input coupling (red curve in

Figure 2C) has the effect of displacing the peak curve to the right

and shifting the inferred coupling at large sampling to the correct

input value (Figure 2C, compare black and red curves). This

makes sense: with stronger coupling, more sampling is generally

necessary to draw all possible amino acid states. Thus, as

shown in Figure 2B, the position of a peak is a function of the

effective size and magnitude of the input interaction. Pure sam-

pling noise in uncoupled positions peaks at the lowest MSA size,

followed in sequence by isolated pairwise couplings and collec-

tive features of increasing size. Relaxing the model to use

random, rather than deterministic sampling of amino acid pairs

just further increases the sampling required for inferring cou-

plings, either without (Figure 2C, black dashed curve) or with

(Figure 2C, red dashed curve) true interactions.

Howmany sequences are required to avoid the undersampling

regime? The minimal MSA size will in general depend on the

pattern and strength of constraints. However, a lower bound

can be estimated by considering a fully unconstrained model—
a model with no input interactions at all (Figure 3). For compara-

tive purposes, one indicator of a lower bound is the number of se-

quences required to observe every possible pair of amino acids in

every pair of positions at least once. Using this measure, we find

that the lower bound MSA size scales with sequence length as

logðL =L0Þ (Figure 3B) and scales with amino acid alphabet size

as q2 (Figure 3C); these scalings are verified for the case of no in-

teractions by analytical calculation (see STAR Methods). With

constraints, the MSA size needed to observe all pairs can be

orders ofmagnitude larger, depending on the strength and struc-

ture of constraints (see Figures 2 and S4 as examples). For real

proteins with a sequence length of 100 or greater, tens of thou-

sands of effective sequences are required just to overcome the

lowest possible scale (pure noise associatedwith non-interacting

positions), and many more sequences may be required to fully

sample various scales of true interactions (Figure S4). Based on

these considerations, we expect that nearly all cases of model

inference operate in the undersampled regime.

The toy model provides another insight into the contact pre-

diction process. A common practice in DCA is to apply an

average product correction (APC), which removes a background

value from inferred couplings.30 This approach has been justified

by its role inmitigating the effects of phylogenetic bias. However,

APC also improves the inference of isolated contacts in our toy

model, which includes no notion of phylogeny (Figure S5). Our

work, therefore, suggests a more general explanation for APC:

it works by suppressing the spurious couplings between non-in-

teracting positions that arise due to undersampling in the data.

Because, in this limit, the non-interacting couplings are compa-

rable in magnitude to the smallest scale of true couplings

between positions (Figure 2), APC helps to separate signal

from noise and improve contact prediction in protein structures

(Figure S5).
Cell Systems 14, 210–219, March 15, 2023 213



Figure 3. The undersampled regime for unconstrained models

(A) Number of missing pairs as a function of MSA size for q = 21 and various sequence lengths L, averaged over 30 realizations, showing that complete sampling

for a totally random MSA requires on the order of 104 sequences.

(B) Average minimal MSA size required to avoid the critical undersampling regime in unconstrainedmodels as a function of the sequence length L, for q = 5. We

observe a scaling in lnðL =L0Þ.
(C) Average minimal MSA size to avoid the critical undersampling regime in unconstrainedmodels as a function of the alphabet size q of possible amino acids, for

L = 10. We observe a scaling that tends to q2.
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Inference as a function of regularization strength
As explained above, the magnitude of inferred couplings in the

undersampled regime is basically set by the strength of the reg-

ularization parameter lJ. For example, with typical small lJ,

DJ � � log lJ. But how do features of different sizes respond

to regularization in the context of undersampling? To understand

this, we carried out model inference for a fixed size MSA

ðN = 300Þ drawn from the toy model while varying the regulari-

zation strength lJ (Figure 4A). The data show that for small

regularization, the isolated pairwise couplings dominate (black),

and collective features (blue and red) are inferred at or below the

level of non-interacting pairs (green). As regularization is

increased, different features take prominence, until ultimately

features are inferred with magnitudes that are in order of their

effective size—large collective > small collective > isolated pairs

(Figure 4A). In this strong regularization regime, all inferred cou-

plings decay like 1=lJ and resemble the empirical correlations

Cijða;bÞ (see STAR Methods for details). Remembering that the

true input couplings are equal for all features and have normal-

ized value kJinpij k=J0 = 1, we can conclude that there is no single

choice of a regularization parameter that can correctly infer the

true pattern of couplings whenever sampling of sequences is

limited (compare Figures 4B–4E with Figure 1A).

An even simpler model with just two features and two param-

eters provides an intuitive geometrical illustration of the problem

(Figure 5). This model comprises sequenceswith L = 6 positions

and q = 2 amino acids with a pattern of input interactions Jinp

shown in Figure 5A. There is one isolated pairwise coupling be-

tween positions 1 and 2 ðJIÞ, and one collective group of

couplings between positions 3–6 ðJCÞ (Figure 5A), all with the

same magnitude JinpI = JinpC = 4. The value of the coupling is

chosen simply to be largely above random fluctuations. This

makes the number of parameters to be inferred just two—ðJI;
JCÞ—enabling us to visualize the inference results on a 2D plane

(Figure 5B). For an undersampled case (here, N = 4), the con-

tours of the log-likelihood function being optimized (solid blue

contours) show that the inference process has no finite
214 Cell Systems 14, 210–219, March 15, 2023
maximum; without regularization, inferred values of couplings

JI; JC will diverge to infinity. This is consistent with the intuition

that couplings must be infinity to account for unobserved amino

acid configurations.

How does regularization correct this problem? The dashed

line contours in Figure 5B show the curves along which the

magnitude of Jij (that is, J
2
I + 6J2C) is a constant for various reg-

ularization strengths. This defines the solutions to inference

with regularization—the points (black filled circles, Figure 5B)

where the solid contours are tangent to the dashed contours.

Thus, the inferred solution is set by the regularization used,

and there is no regularization at which the inferred solution

matches the true solution ðJI = JC = 4Þ. Also, note that at

this level of undersampling, JI is always larger than JC. An

analytical solution relating the regularization parameter lJ

and inferred values of ðbJI; bJCÞ shows how the ratio of these

parameters depends on the relative size of the pairwise and

collective units, and on the level of sampling (see STAR

Methods).

Application to real problems
These findings have direct impact for model inference in real pro-

teins. The pattern of empirical correlations between pairs of

positions in MSAs of protein families reveals a hierarchy of

correlation scales, both in terms of magnitude and size of the

correlated unit. For example, in an MSA of 1,258 members of

the AroQ family of chorismate mutase (CM) enzymes, a subset

of more conserved positions display a pattern of strong intercon-

nected correlations and the remainder of less conserved

positions show weaker and more dispersed correlations14 (Fig-

ure 6A). This pattern is reminiscent of Figure 1C, the correlation

matrix resulting from a toy model with features of different

effective size. Positions in Figure 6A are ordered by their sensi-

tivity to regularization (see STAR Methods), suggesting that

with the undersampling that characterizes practical MSAs, the

inference of couplings in Potts models will inevitably treat these

groups unequally. Indeed, bJij for the AroQ family inferred with
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Figure 4. Inference of couplings as a function of the regularization parameter lJ
(A) The normalizedmagnitude of inferred couplings kbJijk=J0 averaged over position pairs comprising isolated pairwise couplings (black), the small sized collective

group (blue), and the large-sized collective group (red). Inferred couplings for position pairs with zero input couplings are pure undersampling noise and are shown

in green.

(B–E) Values of lJ corresponding to (B)–(E) are marked, and the true value for non-zero couplings is indicated. Note that the sharpness of the peak is influenced by

regularization, but is nevertheless present at typical values. (B–E) For comparisonwith Figure 1A, the bJij matrix inferred at increasing levels of regularization lJ. The

data show how features of different effective size dominate the inference as regularization is adjusted from small to large values. Note that DCA is traditionally

carried out at small regularization strengths lJ < 10� 2.
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standard weak regularization (lJ = 0:001, Figure 6B) highlights

interactions between mostly unconserved positions with

weak correlations, whereas inference with strong regularization

(lJ = 10, Figure 6C) highlights interactions between the

conserved, more collectively evolving positions (see Figure S6

for intermediate values of regularization). Thus, inference in the

context of undersampling selectively represents the information

content of protein sequences, with the emphasis of inferred
A B
couplings set by the regularization used (see color scale,

Figures 6B and 6C).

How do these findings influence our understanding of protein

structure and function? AroQ CMs occur in bacteria, archaea,

plants, and fungi and catalyze the conversion of the intermediary

metabolite chorismate to prephenate, a reaction essential

for biosynthesis of the aromatic amino acids tyrosine and

phenylalanine. Structurally, these enzymes form a compact
Figure 5. A geometrical explanation of regu-

larized inference

(A) The input couplingmatrix Jinp for a toymodel with

L = 6 positions and q = 2 amino acids and with no

fields h. The model has two parameters, one rep-

resenting the isolated pairwise coupling (JI, posi-

tions 1 and 2) and the other the couplings in the

collective set (JS, positions 3–6). The input values

are JinpI = JinpC = 4.

(B) Inferred values of JI and JC from an N = 4 un-

dersampled set of sequences for the toy model as a

function of regularization lJ. The solid contours

show the landscape of the log-likelihood function

being optimized, and the dashed contours show

values of ðbJI; bJCÞ that are consistent with different

strengths of regularization.

Cell Systems 14, 210–219, March 15, 2023 215
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Figure 6. Inference of positional couplings for the AroQ family of chorismate mutase enzymes

(A) Positional conservation (by Kullback-Leibler relative entropy,23 bar graph) and the matrix of positional correlations for an MSA of 1,258 CM homologs. The

positions are ordered by ‘‘sensitivity to regularization’’ (see text and STAR Methods).

(B and C) The coupling bJij matrix for the CM family inferred with standard small regularization (lJ = 0:001, B) or strong regularization (lJ = 10, C), both ordered

as in (A).

(D) AroQ CMs are dimers with two symmetric active sites formed by elements from both protomers (blue and silver); active site residues are highlighted in yellow

stick bonds and a bound substrate analog in magenta. Shown is the structure of the E. coli CM domain (EcCM, PDB: 1ECM).

(E) Spatial organization of positions comprising the top 20 couplings inferred with weak (lJ = 0:001, blue spheres) or strong (lJ = 10, orange spheres)

regularization.
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domain-swapped dimer of relatively small protomers with two

active sites (Figure 6D). The top terms in bJij inferred with weak

regularization ðlJ = 0:001Þmainly correspond to direct contacts

between amino acids in the three-dimensional structure

(Figure S7), but are exclusively located within surface-exposed

residues (Figure 6E, blue spheres). In contrast, top couplings in-

ferred with strong regularization ðlJ = 10Þ represent interactions
between buried positions built around the enzyme active site

(Figure 6E, orange spheres). The couplings inferred with strong

regularization still includemany direct tertiary structure contacts,

but also comprise indirect, longer-range or substrate-mediated

interactions (Figure S8). The key result is that regularization grad-

ually shifts the pattern of inferred couplings from direct contacts

at surface sites to a mixture of direct and indirect interactions

within the protein core.

What is the functional meaning of these findings? To compre-

hensively evaluate this, we carried out a saturation single muta-

tion screen (a ‘‘deep mutational scan [DMS]’’) of the AroQ CM
216 Cell Systems 14, 210–219, March 15, 2023
domain from E. coli (EcCM), following the effect on catalytic

activity. This work is enabled by a quantitative select-seq assay

for CM activity, reported recently.14 Briefly, a library comprising

all single mutations was made by oligonucleotide-directed NNS-

codon mutagenesis, expressed in a CM-deficient E. coli host

strain (KA12/pKIMP-UAUC, see STAR Methods), and grown

together as a single population under selective conditions.

Deep sequencing of the populations before and after selection

provides a log relative enrichment score for each mutant relative

to wild type, which quantitatively reports the effect on catalytic

power.14 This information is displayed as a heatmap in Fig-

ure 7A—a global survey of mutational effects in EcCM.

The distribution of mutational effects is bimodal (Figures 7B

and 7C), with one mode representing neutral variation and

the other representing deleterious effects (black circles, Fig-

ure 7D). The comparison with positions inferred in the top cou-

plings of bJij is clear—the top couplings inferred with standard

weak regularization occur almost exclusively at mutationally



Figure 7. Functional analysis of positions in the E. coli CM domain

(A) A deep mutational scan (DMS), showing the effect of every single mutation on the catalytic power relative to wild type (see STAR Methods). Blue shades

indicate loss of function, red indicates gain of function, and white is neutral. The illustration above indicates the secondary structure.

(B andC) The distribution of mutational effects displayed for all amino acid substitutions (B) or for the average effect of mutations at each position (C). The data are

fit to a Gaussian mixture model with two components (red curve).

(D) The average effect of mutations is shown as a heatmap and circles below mark the positions comprising the deleterious mode in (C) (black), positions

comprising the top 20 couplings inferred with weak (lJ = 10� 3, blue) or strong (lJ = 10, yellow) regularization (as in Figure 6), and positions comprising the

sector as defined by the SCA method (red).

(E) The sector forms a physically contiguous network within the core of the CM enzyme linking the two active sites across the dimer interface.

(F) Inferred couplings as a function of regularization lJ in the CM protein family. The graph shows the magnitude of inferred couplings bJijða;bÞ averaged over

couplings in experimentally functional positions as defined in the figure (red), direct contacts (black), and all other position pairs (light blue). Positions comprising

the three groups are defined in the STAR Methods. In analogy with inference for toy models (Figure 4A), these data show that features of different effective size

(here, pairwise contacts and interactions in mutationally sensitive positions) differentially dominate the inference as regularization is adjusted from small to large

values.
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tolerant positions, whereas those inferred with strong regulari-

zation occur at functionally important positions (Figure 7D,

p = 1:63 10� 7, Fisher’s exact test) (Figures S7 and S8).

Consistent with this, the top couplings inferred with strong reg-

ularization significantly overlap with the network of conserved,

coevolving positions (the sector) defined by the statistical

coupling analysis (SCA) method23 (p = 2:23 10� 6, Fisher’s

exact test) (Figures 7D and 7E).

A systematic analysis of the effect of regularization on infer-

ence of positional couplings is shown in Figure 7F. The data

show that contacts and functional positions are differentially

emphasized, with contacts acting similar to isolated pairwise

couplings and functional sites acting similar to a more epistatic

collective unit.

Discussion
The inference of coevolution between amino acids has been

valuable, providing new hypotheses for protein mechanisms

and global rules for design. One approach is based on Potts
models, in which empirical frequencies and correlations of amino

acids in aMSA are used to define a probability distribution for the

protein family over all sequences.22 The Potts model has been

demonstrated to reveal pairwise tertiary contacts between

amino acids,3,22 opening the path to sequence-based structure

prediction.1,4 In this regard, the apparent inability of Potts

models to obviously describe collective interactions of amino

acids has been puzzling.31 The collective interactions have

been shown to specify native-state foldability,13 biochemical

activities,10,12,17,18,32,33 allosteric communication,19,34,35 and

evolvability,36 defining features of proteins that are essential for

their biological function.

The work presented here explains the nature of this problem.

With limited sampling of sequences in practically available

MSAs, features of different effective size and conservation are

differentially emphasized as a function of MSA size and regulari-

zation. With weak regularization, the inference focuses on small-

scale, relatively unconserved, local interactions. The DMS in CM

show that these tend to be functionally less important, local
Cell Systems 14, 210–219, March 15, 2023 217
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structural contacts. With strong regularization, inference empha-

sizes larger-scale, conserved features, which in CM are in

functionally essential positions. A key point is that there is no sin-

gle setting of regularization at which all features are correctly rep-

resented. In future work, it may be valuable to extend the exper-

imental studies to comprehensive double mutagenesis, an

approach that can directly probe the collective action of larger-

scale statistical features in proteins.10

One consequence of biased inference is evident in the use of

Potts models for protein design. Recent work shows that se-

quences drawn from a Potts models of chorismate mutate en-

zymes are indeed true synthetic homologs of the protein family,

displaying function both in vitro and in vivo that recapitulates the

activity of the natural counterparts.14 However, this result

required sampling from the model at computational ‘‘tempera-

tures’’ less than unity, a process that is meant to shift the energy

scale to correct for regularization and to enforce under-esti-

mated but functionally essential couplings. This procedure re-

covers protein function, but does so at the expense of dramatic

reduction in sequence diversity of designed proteins compared

with natural ones.14 In light of the work presented here, we can

now understand this problem as a non-optimal solution to

compensating the unequal inference of features by globally

depressing the energy scale.

Can we then ‘‘correct’’ the inference process to more uni-

formly and accurately represent the biologically relevant patterns

of amino acid interactions? Given that practical MSAs are usually

grossly undersampled, the main parameter we can control is

regularization. However, although no single regularization

parameter can provide a proper inference for all scales of inter-

actions, it seems clear that what is needed in the Potts model

framework is a strategy for inhomogeneous regularization,

where parameters in themodel are inferred according to the level

of sampling noise that acts on them. If done correctly, such a

process should lead to a model that unifies the inference of

both local and collective features and enables design of artificial

proteins that recapitulate the sequence diversity of natural mem-

bers of a protein family. With insights from the toy models pre-

sented here, the availability of powerful experimental systems

such as the CMs may provide the foundation for this next

advancement in sequence based models for proteins.
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METHOD DETAILS

Toy models and simulated data
Simulated data are generated from input Potts models, with couplings and fields fJinp;hinpg. The inferred couplings and fields are

denoted fbJ; bhg. The input model described in Figures 1, 2, and 3 involves zero fields ðhinpi ðaÞ = 0Þ and couplings with non-zero in-

teractions set to equal strength ðJinpij ða;aÞ = 2Þ. This choice makes the pattern of couplings favorable for i and j to have identical

amino acids, excluding frustration. Sequences are generated from input models through aMarkov-Chain Monte Carlo process using

the Metropolis-Hastings algorithm. Each sample is obtained after 23105 Monte Carlo iterations starting from independent random

sequences, a value sufficient to reproduce the true input couplings with complete sampling (Figure S1). All codes for creating the

MSAs were written in house using MATLAB (Mathworks Inc.) and are available in a dedicated Zenodo repository release.

Inference and Gauge
Exact calculations were used for model inference in the small systems described in Figures 2C, 5, and S1H. The process involves

numerical minimization of the negative log likelihood function, with a regularization term

L = log Z �
X
i;a

hiðaÞfiðaÞ �
X
i < j;a;b

Jijða;bÞfijða;bÞ + lJ
X
i < j;a;b

��Jijða;bÞj2 + lh
X
i;a

jhiðaÞj2 (Equation 4)
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where Z =
P
s
exp

"P
i

hiðsiÞ +
P
i < j

Jijðsi; sjÞ
#
is the partition function, with s running over the entire space of sequences.

For all other cases involving larger systems, we used the pseudo-likelihood maximization method plmDCA27,39 for approximate

inference, with L2 regularization on both fields ðlhÞ, and on couplings ðlJÞ. The value of lh is set consistent with past work to be

lh = 0:01 and the values of lJ as indicated in themain text. For inference of Chorismate MutaseMSA, a standard sequence weighing

step was added3 to reduce phylogenetic bias. In this step, for each sequence a number of similar (defined as having a Hamming dis-

tance less than q = 0:8) sequences inMSA is calculated, including self. The statistical contribution of that sequence are then reduced

by a factor that is the inverse of that number. The sum of these factors for all sequences defines the effective number of sequences,

Neff. This value represents the diversity in theMSA, and the evaluation of sufficient sampling, in amoremeaningful way thanMSA size.

For sequences of length L and number of amino acids q, the couplings and correlations comprise four dimensional L3 L3 q3 q ar-

rays, and to represent them in as two-dimensional matrices, we take the Frobenius norm over amino acids, defined by

kXijk =

 X
a;b

Xijða;bÞ2
!1=2

(Equation 5)

For couplings, this projection is gauge dependent and we implement it in the zero-sum (or Ising) gauge, such thatX
a

Jijða;bÞ =
X
b

Jijða;bÞ = 0;
X
a

hiðaÞ = 0: (Equation 6)

This gauge minimizes the Frobenius norm over all gauges. Note however that the inferred model bPðsÞ is independent of the choice

of the gauge. For comparison with input values Jinp, the inferred values bJ are represented as kbJijk=kJinpij k which is inferred as 1 for all

non-zero couplings, when the inference is well sampled (Figure S1I). For real data treatment, the Frobenius norm sum does not

include the ‘‘gap’’ residue, since those are artifacts of the alignment process, however the general results of this paper do not depend

on this particular choice.

Comparison between methods of inference
As noted in the main text, the inference of Potts models is computationally intractable for all but the smallest of systems for which

exact calculations are possible (exactDCA). The calculations involve the estimation of the marginals bf iðaÞ; bf ijða;bÞ as a function of

the model parameters fbJ; bhg and an exact estimation requires a sum over the space of all possible sequences (see Equation 3 of

themain text). Several approximations have been proposed to address this computational problem,22 including the plmDCAmethod

and Botlzmann machine learning (bmDCA).16 In the main text, we use an exact calculation for Figures 2C and 5 and the plmDCA

method otherwise. Figure S1 shows comparisons of inference with these various approaches for the same input as in Figure 1(or

an equivalent one with q = 2;N = 20 for exactDCA), demonstrating robustness of the claims in this work to the chosen method of

inference. Finally, Figure S1I shows the plmDCA calculation for an MSA size that approaches convergence to full sampling with

N = 107, for a small value of regularization, lJ = 10� 5, such that input coupling can be recovered in full. This plot shows that

plmDCA and that our Markov ChainMonte Carlo generation process are sufficient to recover the true input constraints with complete

sampling.

Choices of interaction strength and structure
The input interactions were chosen to represent patterns of pairwise couplings, medium cooperative interaction units and large

cooperative interaction units. The interactions between position pairs are chosen to be ’’ferromagnetic’’, meaning that the occur-

rence of the same amino acid in both positions is favored. This choice does not limit the generality of the results however, because

choosing any other favorable q amino acid pair combinations in the absence of frustration would produce the same outcome. One

useful consequence of the ferromagnetic case is that the number of amino acid motifs in every interaction regardless of size can be

made equal to the number of amino acids q. In real proteins, not all interactions will necessarily involve just q favorable pairings or will

avoid frustration. However, we note that the biases in inference reported here due to undersampling are only enhanced by having less

than q favorable amino acid pairs (see also next section below); thus, the ferromagnetic case is a conservative choice to illustrate the

effects of heterogeneous undersampling noise. A second issue is the strength of couplings in the input model. The most justifiable

way to demonstrate the uneven treatment of these three classes of interactions is to have each interaction Jabij between residues

involved to be of the same magnitude Jinpij , regardless of the size of unit to which they belong. In this work, we chose a value for inter-

action strength that simply keeps the smallest-scale feature, pairwise interactions, separable frompure noise. For example, Figure S2

shows that choosing too small a value for Jinpij will make isolated pairwise interactions invisible to the inference, a choice to be

avoided. Above some minimal limit, however, the specific value chosen Jinpij = 2 is not critical for the results of this work.

Effects of positional conservation in the toy model
In this work, we keep the number of favored configurations (the motifs) equal to the number of amino acids q, such that all ferromag-

netic outcomes occur. But in real proteins, selective pressure on positions (whether due to first- or higher-order constraints) drives

the conservation of certain motifs such that some configurations of amino acids are typically not observed within such motifs in
Cell Systems 14, 210–219.e1–e7, March 15, 2023 e2
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MSAs. So, what happens if the number of favorable ferromagnetic pair configurations in our toy model is less than q (homogeneously

for all interacting position pairs)? Figures S3A–S3C show the case of inference with N = 300 and l = 10� 3 (that is, same as for Fig-

ure 1D), but with input patterns that have varying numbers of favorable motifs in the interactions (8,5,3). The plots show that the

smaller the number of motifs the stronger is the effect that we are describing, where inference of true interactions of all scales are

close to or below the level of pure noise. The reason is that the relative importance of positions and amino acids, which are not favored

increases (because the effective alphabet size of interacting positions decreases; more below) when there are fewer motifs. These

findings suggest that the tendency for conservation within larger collectively evolving networks should exacerbate the ’’invisibility’’ of

of such features in standard inference approaches.

Another key feature of ourmodel is that first-order constraints on positions taken independently (fields hinpi ) are set to zero, a simpli-

fication to exclusively focus on the inference of pairwise interactions ðJabij Þ. But then what is the effect of adding first-order constraints

on the inference process?We compared amodel with coupled pairs not subject to a field ðhinpi = 0Þ to one in which coupled pairs are

subject to a non-zero field hinpi = 3 to qc = 4 out of the q = 10 possible amino acids. All other parameter choices of the model are

otherwise the same as in Figure 1 (inference shown in Figure S3D). The results show that inference in the presence of first-order con-

servation causes the inferred couplings to be interpreted as weaker. This is due to the Frobenius norm metric being extensive in the

alphabet size; thus, with a smaller effective alphabet (Figure S3E), the conserved positions sum to a smaller Frobenius norm; as a

consequence themagnitude of inferred couplings are smaller. Another consequence of the smaller alphabet is that it leads to a lesser

degree of undersampling; hence the peak of inferred couplings shifts to small MSA size (Figure S3F). In real proteins, available data

suggest that the larger collective features are selectively more conserved than the isolated pairwise interactions (see Figure 6A). The

findings described here suggest two conclusions: (1) the conservation of larger-scale features serves to exacerbate the inability of

Potts model inference to discern these larger-scale features (this contribution is entirely independent of undersampling), and (2) con-

servation alleviates sampling needs and so any undersampling phenomenon are driven by the strength of epistatic interactions,

rather than first-order constraints.

Validity for realistic proteins
Finally, while we perform the calculations in themain paper on a small toymodel, with an alphabet of only q = 10 amino acids and only

L = 20 positions (to be able to observe full sampling for the stronger scales), the validity of the effect extends to larger systems. As an

illustration, we performed a similar calculation, for an L = 100 system with q = 21 amino acids, where 50 pairwise couplings are cho-

sen at random within the first 80 positions, in addition to cooperative units of size 5 and 8 positions – all with Jinpij = 2. The results of

the inference as a function ofMSA size are given in Figure S4 for two values of regularization, showing the peak in the inferred isolated

couplings dominating over the other couplings. In these larger proteins, unlike in the smaller toymodel, a coupling strength Jinpij can be

chosen even lower than the value we used in the toy models, while still discerning isolated couplings at the standard regularization,

such that the non-interacting scale is more substantial and dominates over the rest. In practical cases, the effective alphabet in most

interacting positions is lower than q = 21. As a result and as mentioned above, wemay expect an additional reduction of the various

inferred coupling with respect to the undersampling spurious signal in non-interacting positions and at the smaller scales.

Lower bound for minimal sampling
The effects that we describe in themain text arise from undersampling, such that certain combinations of pairs of amino acids are not

represented in the data. The typical number of samples needed to overcome this problem depends on the specifics of the generating

models; for example, models with stronger constraints, meaning larger couplings and/or larger collective units will require a larger

number of samples. This phenomenon lies at the heart of the heterogeneity in sampling noise experienced by features of different

effective size in practical multiple sequence alignments. To obtain an analytical expression for the lower bound on sampling, we

consider here the least constrained model, which is a null model with no fields or couplings at all, and estimate the mean number

of samples needed to observe all possible pairs of amino acids at least once, as a function of the number L of positions and the num-

ber q of possible amino acids.

The numerical results (Figure 3 of the main text) suggest a scaling with q as q2 and a scaling with L as ln L. These scaling relation-

ships can be understood by a rough calculation that treats the combinations of amino acids independently. Starting with just one pair

of positions ðL = 2Þ, a particular combination ða;bÞ of amino acids has probability 1=q2 of occurring in any particular sample, and the

probability that it is not observed in N samples is, therefore, ð1 � q� 2ÞNxexpð� N =q2Þ. Treating all combinations of amino acids

independently, the probability that one of the q2 combinations is not observed is then
�
1 � exp

�� N=q2
� �q2

xq2 exp
�� N=q2

�
.

The necessary number of samples Nmin needed to observe all combinations of amino acids thus scales with q as q2.

Extending the argument to L> 2 positions under the same simplifying assumption that combinations of amino acids can be

treated independently, the total number of combinations becomes q2LðL � 1Þ=2 and PðNÞxq2LðL � 1Þ=2 expð� N =q2Þx
expð2 ln q + 2 ln L � N =q2Þ, from which it follows that the required number of sequences Nmin scales with L as ln L= L0.

As an example, with the model of Figure 2A, where L = 20 ad q = 10, the unconstrained model is predicted to require Nminx 103

as a lower limit, which is beyond the peak corresponding to pairwise couplings but before the peak corresponding to couplings

involved in collective units. For a length L = 100 and q = 21 amino acids, this limit corresponds toNminx104 sequences. This is, how-

ever, only a lower bound that assumes a model with no constraints. Constraints can increase the required number of sequence for

proper sampling by orders of magnitudes. Figure S4 shows the inference as a function of sample size, the equivalent of Figures 2A

and 2B, for an L = 100 and q = 21 system. The low regularization peak is close to the predicted lower bound for the unconstrained
e3 Cell Systems 14, 210–219.e1–e7, March 15, 2023
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positions, and slightly higher for the pairwise interactions. The small collective unit is nowhere near its peak even at MSA size N =

105, and so is still deeply undersampled. The more regularized result in Figure S4A shows the effect mitigated, but not removed,

preserving artificial skew in favor of the pairwise interactions.

Methods such as flavor reduction,40 which effectively decrease q, or pseudo-counting,3 which effectively increase N, will alleviate

undersampling-induced spurious signals but come with biases of their own. Note also that pseudo-counts are formally equivalent to

L2 regularization in the context of Gaussian models.41

Deterministic minimal model for the peak in the undersampled regime
The peak observed in Figure 2B arises in an undersampling regime where the log-likelihood has no extremum, and where the results

are entirely determined by the regularization. This is illustrated by the equation DJ+ logDJ = log q2 �N
2N2lJ

shown in the main text, where

we consider a minimal model of just L = 2 positions with q possible amino acids and no constraint. In order to focus on the desired

effect and isolate it from the contribution of sampling stochasticity, we analyze sets of sequences that have a uniform number of each

of the q amino acids, fiðaÞ = fiðbÞ for any a;b at each position i. We further assume that each combination ða;bÞ is either present or

absent in a single sequence for each pair i; j. This defines a ‘‘deterministic’’ sampling procedure.

In this scenario, the inferred couplings bJijða;bÞ can only take two values, depending on whether the combination of ða;bÞ is

observed or not at ði; jÞ. Using Equation 3 in the main text, this difference DJ is given by

1

N
=

eDJ

NeDJ +q2 � N
+ 2lJDJ: (Equation 7)

Assuming that lJ is small, an expansion for large DJ leads to equation in the beginning of this section and in the main text.

In the Ising gauge, the inferred couplings for the occurring and missing combinations of amino acids are, respectively,

ð1 �N =q2ÞDJ and � NDJ=q2. The Frobenius norm of the couplings is, therefore, maximal when there is the same number of missing

and occurring pairs, at N = q2=2. The exact position of the peak is gauge and representation dependent, but the mechanism that

leads to a non-monotonic dependence in sampling size is general.

The dependence of the peak on the input coupling Jinp can be studied by adding a strong ferromagnetic coupling between the two

positions of the model. Most generated sequences then involve the beneficial ferromagnetic combinations of amino acids, which

increases the number of samples needed to observe all combinations, and therefore shifts the position of the peak to larger values

of sampling size, as seen in Figure 2C (red).

Strong regularization limit
In the strong regularization limit lJ/N where bJij/0, we have bCijxbJij where bCijða;bÞ = bf ijða;bÞ � bf iðaÞbf jðbÞ is the correlation

obtained from the inferred model bPðsÞ. Using fij = bf ij + lJ bJij from Equation 3, we have, therefore,

Cijða;bÞ = bJijða;bÞ+ bf iðaÞbf jðbÞ � fiðaÞfjðbÞ+ 2lJ bJijða;bÞ: (Equation 8)

and bJijða;bÞ = ½Cijða;bÞ + fiðaÞfjðbÞ � bf iðaÞbf jðbÞ�� ð2lJ + 1Þ (Equation 9)

In the strong regularization limit, the inferred couplings are, thus, proportional to the correlations, up to the addition of a rank-two

correction. This correction is controlled by lh, the regularization parameter for the fields, and is negligible whenever the model repro-

duces the first order statistics, i.e., bf iðaÞ = fiðaÞ for all i;a.

Two-parameter minimal model
An even simpler model with just two features and two parameters provides an intuitive geometrical illustration of the problem (Fig-

ure 5). This model comprises sequences with L = 6 positions and q = 2 amino acids with a pattern of input interactions Jinp shown in

Figure 5A. There is one isolated pairwise coupling between positions 1 and 2 ðJIÞ, and one collective group of couplings between

positions 3-6 ðJCÞ (Figure 5A), all with the same magnitude JinpI = JinpC = 4. This makes the number of parameters to be inferred

just two, ðJI; JCÞ, enabling us to visualize the inference results on a 2D plane (Figure 5B). For a maximally undersampled case

(here,N = 4, specifically chosen such that both amino acids are equally represented at every position), the contours of the log-likeli-

hood function being optimized (solid blue contours) show that the inference process has no finite maximum; without regularization,

inferred values of couplings JI; JC will diverge to infinity. This is consistent with the intuition that couplings must be infinity to account

for unobserved amino acid configurations.

How does regularization correct this problem? The dashed line contours in Figure 5B show the curves along which the magnitude

of Jij (that is, J
2
I + 6J2C ) is a constant for various regularization strengths. This defines the solutions to inference with regularization - the

points (black filled circles, Figure 5B) where the solid contours are tangent to the dashed contours. Thus, the inferred solution is set by

the regularization used, and there is no regularization at which the inferred solution matches the true solution ðJI = JC = 4Þ. Also,
note that at this level of undersampling, JI is always larger than JC. An analytical solution relating the regularization parameter lJ and

inferred values of ðbJI; bJCÞ which shows how the ratio of these parameters depends on the relative size of the pairwise and collective

units, and on the level of sampling, is derived as follows. below.
Cell Systems 14, 210–219.e1–e7, March 15, 2023 e4
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We generate a very small data-set of N = 4 sequences with input couplings JinpI = JinpC = 4. We also assert that amino acids are

uniformly represented at each position to focus on the inference of the couplings - this is not usually a problem in larger system, but

here needs to be chosen as a condition. We typically obtain a data-set where every sequence has themaximal fitness of Fmax = JI +

6JC. To estimate bJI and bJC, considermore generally inferring a common coupling bJn between npositions based on the knowledge of a

mean fitnessgivenbyFn =

�
n
2

�
Jn, (JIhJ2 andJChJ4). Thepartition function in the low-temperature limit isZ2 = 2ðeJ2 + 1ÞandZn =

2e

�
n
2

�
Jn

ð1 + ne�ðn� 1ÞJnÞ for n> 2 and the regularized log-likelihood function is LlJ=N = lnð1 =ZnÞ+
�
n
2

�
Jn �

�
n
2

�
lJJ

2
n. Differenti-

atingwith respect to Jn and keeping again only leading term in Jn, we thus obtain 1=lJ = bJ2e
bJ2 and 1=lJ = bJne

ðn� 1ÞbJn for n> 2. Applied

to our minimal model, this gives

1
�
lJ = 2bJIe

bJI = bJCe
3bJC (Equation 10)

which directly indicates an inequality bJI and bJC. The ratio bJI=bJC can be roughly estimated to bex3 in the limit where lJ goes to zero.

Figure 5B indeed indicates an asymptotically linear relationship with bJI=bJCx2:55.

Average product correction
An average product correction (APC) is routinely used to predict contacts from the inferred couplings bJij,

30 where pairs of positions

are not scored by the Frobenius norm kbJijk but by

kbJijkAPC = kbJijk �
P

kkbJikk
P

kkbJkjkP
klkbJklk

(Equation 11)

The correction is aimed at removing a background value shared by positions i; j. The comparison of Figure S5 with Figure 4

shows that APC is indeed effective in enhancing the identification of isolated coupled pairs in the low-regularization limit. On

the other hand, APC may not be necessarily useful for identifying large collective units: for instance, Figures S5B and S5C

show that APC seems to highlight smaller scale patterns at the expense of larger scale patterns. As described in the main

text, our work suggests that APC mainly works by removing spurious signals that arise by the smallest scale features in an align-

ment, the non-interacting positions. Since isolated positions scale closest to this random signal (Figures 2A and 2B), the APC is

primarily effective at contacts prediction.

Multiple sequence alignment
Sequences of the AroQ family were acquired by three rounds of PSI-BLAST42 using residues 1-95 of EcCM (the chorismate mutase

(CM) domain of the E.coliCM-prephenate dehrdratase) as the intial query (e-score cutoff 10� 4). For alignment, we created a position-

specific amino acid profile from 3D alignment of four CM atomic structures (PDB IDs 1ECM, 2D8E, 3NVT, and 1YBZ) and iteratively

aligned nearest neighbor sequences from the PSI-BLAST using MUSCLE,43 each time updating the profile. The resulting multiple

alignment was subject to minor hand adjustment using standard rules and trimmed sequentially (1) to retain positions present in

EcCM, (2) to remove positions with more than 20% gaps, (3) to remove sequences with more than 30% gaps, and to remove excess

sequences with more than 90% identity to each other. The final alignment contains 1258 sequences and 89 positions and is available

in a dedicated ranganathanlab github repository.

Inference from real data
Figures 6 and 7F present results obtained by inferring a Potts model from a multiple sequence alignment of chorismate mutases

(CMs) previously described in,14 using a standard sequence weighting parameter q = 0:8 to reduce proximal phylogenetic effects.

The inference is performed with plmDCA for different values of lJ while keeping lh = 0:01 fixed. This value, though important,

does not influence the results significantly as long as it is kept sufficiently low.

Coupling matrices with positions ordered along the primary sequences are represented in the top row of Figure S6. In Figures 6B

and 6C and the bottom row of Figure S6, the positions are re-ordered to visually emphasize the differences arising from different

choices of lJ. The new order is based on a sensitivity to regularization measure, defined by

ci =

P
jkbJðlJ = 102Þ

ij kP
jkbJðlJ = 10� 7Þ

ij k
(Equation 12)

where bJðlJ = xÞ
ij indicates the coupling inferred with lJ = x and where we compare here two extreme values of lJ. The result in the

ordered case shows how the protein positions seemingly decompose into two parts that are analogous to Figure 4, where the

collective unit and the isolated pairwise couplings switch their relative importance. Note that if pairwise coupling represented

the only signal in the data, we would expect a different picture: as regularization increases, the spurious signal would decrease

and separate from true signals but the largest couplings would remain the same as when inferred with low regularization.
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The dramatic switching of couplings between different groups of positions strongly argues for the presence of a heterogeneity of

scales in real proteins.

Interpretation of top couplings
The top L=2 couplings inferred at low regularization typically represent contacts in three-dimensional structures.3 We examined the

top 20 pairs ði; jÞ with largest kbJijk for the CM MSA, excluding pairs that are less than four positions apart along the linear sequence

ðji � jj > 3Þ. Figures S7 and S8 represent the positions that contribute to the top 20 pairs with either weak ðlJ = 0:001Þ regularization
or strong ðlJ = 10Þ regularization. The data show that inference with weak regularization identifies mainly direct contacts in the ter-

tiary structure of E.coliCM (EcCM, PDB 1ecm) but that inference with strong regularization identifies also indirect or substrate-medi-

ated interactions that are sensitive tomutations. Here a contact is defined as two residues with at least one pair of atoms approaching

within 5Å in the crystal structure of EcCM. To examine the relationship of couplings to function, we define ‘‘experimentally significant’’

couplings as those including the 34 positions involved in the deleterious mode in Figure 7C, defined by fitting the data to a Gaussian

mixture model. A position is said to be sensitive to mutations based on the findings presented in Figure 7D. This allows us to examine

how top pairs foundwith different levels of regularization are related to CM function. The data show that top pairs obtained in the low-

regularization limit correspond in large part to contacts (44%) and not at all to experimentally significant pairs (2%) (Figure S9A; see

below for results with an average product correction that leads to a greater number of top pairs that are contacts, as well as an in-

crease in the experimentally functional network). In contrast, 98% of top pairs obtained in the high-regularization limit are experimen-

tally significant couplings (most of which even include both positions as mutationally sensitive 76%, and only 36% are contacts

(Figure S9C). These contacts are distinct from those obtained with weak regularization and overlap with sector pairs (Figures 6E

and 7E).

Repeating the analysis of Figure S9 with the APC, we verify that contact prediction is significantly improved (Figure S10). In partic-

ular, at low regularization, 80%of the top L=2 pairs are contacts (Figure S10A). In contrast, at high regularization, contact prediction is

slightly improved , when compared to no APC, but the inference of experimentally significant pairs drops from 98% to 90% (Fig-

ure S10C). Note, however, that at high regularization, with or without APC, over 96% of top pairs can be interpreted as contacts

or experimentally significant pairs.

In Figure 7F, we define 17 ‘‘statistically significant contacts’’ as top pairs obtained in the low-regularization limit with APC that are in

the contact map, but are not part of the functional network positions presented in Figure 7D . Also, we define 32 ‘‘statistically signif-

icant experimental couplings’’ as top pairs obtained with strong regularization without APC that are in the functional network, but are

not contacts.

Deep mutation library
A saturation single site mutational library for EcCM was constructed using oligonucleotide-directed NNS codon mutagenesis. To

mutate each position, two mutageneic oliognucleotides (one sense, one antisense) were synthesized (IDT) that contain sequences

complementary to � 15 base pairs (bp) on either side of the target position and an NNS codon at the target site (N is a mixture of

A,T,C,G bases and S is a mixture of G and C). One round of PCR was carried out with either the sense or antisense oligonucleotide

and a flanking antisense or sense primer. A second round amplification with first round products and both flanking primers pro-

duced the full-length double-stranded product, which was purified on agarose gel and quantitated using Picogreen (Invitrogen). All

first round products were pooled in equimolar ratios, purified, digested with NdeI and XhoI, and ligated into correspondingly di-

gested plasmid pKTCTET-0.38 For selection, the library was transformed into electrocompetent NEB 10-beta cells (NEB) to yield

over 1000x transformants per gene, cultured overnight in 500 ml LB supplemented with 100 mg/ml ampicillin (Amp), and subject to

plasmid purification. The library was diluted to 1 ng/ml to minimize multiple transformation and transformed into the CM-deficient

strain KA12 containing the auxiliary plasmid pKIMP-UAUC37 to yield >1000x transformants per gene. The mixture was then recul-

tured in 500 ml LB containing 100 mg/ml Amp and 30 mg/ml chloramphenicol (Cam) overnight, supplemented with 16% glycerol,

and frozen at � 80�C.

Chorismate mutase selection assay
The selection assay followed a recently reported protocol.38 Briefly, glycerol stocks of KA12/pKIMP-UAUC carrying the saturation

mutation library in pKTCTET-0 were cultured overnight at 30�C in LB supplemented with 100 mg/ml Amp and 30 mg/ml Cam. The cul-

ture was diluted toOD600 of 0.045 inM9cminimal medium38 supplemented with 100 mg/ml Amp, 30 mg/ml Cam, and 20 mg/ml each of

L-phenylalanine (F) and L-tyrosine (Y) (M9cFY, non-selective conditions), grown at 30�C toOD600 � 0:2, and washed in M9c (no FY).

An aliquot of the washed culture was used to inoculate 2 ml LB with 100 mg/ml Amp, and grown overnight at 37�C and harvested for

plasmid purification (the pre-selected, or input sample). For selection, another aliquot of the washed culture was diluted to a calcu-

lated starting OD600 = 10� 4 into 500 ml M9c supplemented with 100 mg/ml Amp, 30 mg/ml Cam, 3 ng/ml doxycycline (to induce CM

gene expression from the Ptet promoter) and grown at 30�C for 24h to a final OD600 < 0:1. Fifty ml of the culture was harvested, re-

suspended in 2 ml LB with 100 mg/ml Amp, grown overnight at 37�C, and harvested for plasmid purification (the selected sample).

Input and selected samples were amplified using two rounds of PCR with KOD polymerase (EMD Millpore) to add adapters and

indices for Illumina sequencing. Amplification in the first round included 6-9 random bases to aid initial focusing and part of the i5

or i7 Illumina adapters. The remaining adapter sequenes and TruSeq indicies were added in the second round. PCR was limited

to 16 cycles and included high initial tempate concentration to minimize amplification bias. Final products were gel purified (Zymo
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Research), quantified by Qubit (ThermoFisher), and sequenced on an Illumina MiSeq system with a paired-end 250 cycle kit. Paired-

end reads were joined using FLASH, trimmed to the NdeI and XhoI cloning sites and translated. Only exact matches to library variants

were counted. Relative enrichments (r.e.) were calculated according to the equation r:e: = logðfxs =fxi Þ � logðf rs =f ri Þ where fxs and fxi
represent the frequencies of each allele x in either selected ðsÞ or input i pools and f rs and f ri represent those values for EcCM, the

wild-type reference.
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Fig. S1. Comparing inference methods – For the same system as in Fig. 1, (A) the input positional interaction J inp
ij

used in generating the data, (B) the positional correlation

Cij and (C) the plmDCA inferred positional couplings Ĵij for λJ = 10−3. (D) same as (C) but using bmDCA with 5 × 104 iterations. For the same system, but with q = 2
amino acids and only N = 20 sequences, (E) the input positional interaction J inp

ij
used in generating the data, (F) the positional correlation Cij and (G) the plmDCA inferred

positional couplings Ĵij for λ = 10−3. (H) is the same as (G) inferred using an exact calculation with same regularization parameter. (I) is the plmDCA inference approaching
complete sampling, with N = 107 for a small regularization value of λJ = 10−5. This shows that the plmDCA converges to the correct solution given sufficient sampling, and
also demonstrates the sufficiency of the Monte Carlo sampling procedure for generating sequences.



Fig. S2. Evaluation of input interaction choices - (A,B,C) Normalized inference Jij/J0 result for same parameters as Fig .1 (N = 300, λ = 10−3) for alignments produced
with different input interactions strengths J inp

ij
= 1, 1.33, 1.66. This should be compared to the result in Fig .1D where J inp

ij
= 2. The plots show uneven inference of the

different scales (isolated, small cooperative and large cooperative), where for small J inp
ij

the features become closer in scale.



Fig. S3. Evaluation of conservation parameter choices - (A,B,C) Normalized inference Jij/J0 result for same parameters as Fig .1 (N = 300, λ = 10−3) for alignments
produces with different number of ferromagnetic motifs = 8, 5, 3 per interaction. This should be compared to the result in Fig .1D where motifs = q = 10. The conclusion
of this paper does not strongly depend on the choice of motifs. (D) Normalized inference Jij/J0 result when comparing isolated coupling that are unconserved (positions
1-10) with couplings that are conserved (positions 11-20) as a result of a field hinp = 3 favoring qc = 4 amino acids. Other parameters are the same as Fig. 1 in main text.
(E) Shows the inferred Jab

ij for (i, j) = (12, 15), which is a conserved isolated coupling, in (D). (F) Shows the mitigated (λ = 10−3) dependence of the mean coupling
inference on the MSA size, for conserved and unconserved positions. The peak of the conserved couplings is at slightly lower MSA sizes. The conserved positions have a
smaller effective alphabet and hence less terms in the Frobenius norm along with a smaller undersampling effect.



Fig. S4. Counterpart of Fig. 2A,B - (A,B) normalized magnitude of inferred couplings ∥Ĵij∥/J0 as a function of MSA size, averaged for positions comprising the different sized
features in the input model for an L = 100 and q = 21 system with 50 contacts, a 5 site small collective units and an 8 site large collective unit, also constrained by J inp

ij
= 2.

The low regularization peak is close to the predicted lower bound of Nmin ≃ 104 for the unconstrained positions.



Fig. S5. (A,B,C)Counterpart of Fig. 4B,D,E using the APC score ∥Ĵij∥APC defined in Star Methods instead of the Frobenius norm ∥Ĵij∥.



Fig. S6. Coupling matrices Ĵij inferred from real data for increasing values of the regularization parameter λJ – In the top row (A-D), positions are ordered as in the linear
sequence while in the bottom row (E-H) they are ordered by the value of χi, defined in Star Methods to represent the sensitivity to change in the regularization parameter λJ .
As regularization increases, the bottom row shows a tendency analogous to Fig. 4, where the various components of the toy model switch their relative importance



Fig. S7. Position pairs comprising the top 20 couplings in Ĵij inferred with weak regularization (λJ = 0.001). Some pairs represent direct tertiary structure contacts (indicated
by red "c"), but only one includes mutationally sensitive positions (marked with red asterisk). Mutational significance is determined from the deep mutational scan reported in
Fig. 7.



Fig. S8. Position pairs comprising the top 20 couplings in Ĵij inferred with strong regularization (λJ = 10). Some pairs represent direct tertiary structure contacts (indicated
by red "c"), and all include mutationally sensitive positions (marked with red asterisk). Mutational significance is determined from the deep mutational scan reported in Fig. 7.



Fig. S9. Statistics over top coupled pairs, ranked by ∥Ĵij∥, the Frobenius norm of the couplings Jij(a, b) – (A,B,C) For three values of the regularization parameter λJ ,
fraction of top ∥Ĵij∥ pairs that are contact position pairs (in blue), pairs with experimentally sensitive positions (in red) or in either one of these groups (in green). Contacts are
defined as amino acids within 5 Å in the 1ecm PDB structure. Experimentally sensitive positions are obtained as in Fig. 7D. When not visible, the blue curve is under the green
curve. Couplings predicted at high regularization are almost entirely related to functional positions, even if some of them are contacts. It can also be seen that the contacts
predicted in the high regularization result are distinct from the ones predicted by the low regularization result, since the former have a strong overlap with the experimentally
sensitive position pairs, whereas low regularization contacts do not.



Fig. S10. Statistics over top coupled pairs, ranked by ∥Ĵij∥APC, based on the APC defined in Star Methods – (A,B,C) For three values of the regularization parameter λJ ,
fraction of top ∥Ĵij∥APC pairs that are contact position pairs (in blue), pairs with experimentally sensitive positions (in red) or in either one of these groups (in green). When
compared to Fig. S9 we see that while applying APC greatly increases the predictive power for contacts, it is not obvious that this is the case for cooperative units.
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