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The inheritance of characteristics induced by the environment has
often been opposed to the theory of evolution by natural selection.
However, although evolution by natural selection requires new
heritable traits to be produced and transmitted, it does not pre-
scribe, per se, the mechanisms by which this is operated. The
mechanisms of inheritance are not, however, unconstrained, be-
cause they are themselves subject to natural selection. We introduce
a schematic, analytically solvable mathematical model to compare
the adaptive value of different schemes of inheritance. Our model
allows for variations to be inherited, randomly produced, or
environmentally induced, and, irrespectively, to be either trans-
mitted or not during reproduction. The adaptation of the different
schemes for processing variations is quantified for a range of
fluctuating environments, following an approach that links quan-
titative genetics with stochastic control theory.

Darwinian evolution | Lamarckism | heredity | acquired characteristics |
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Three principles underlie the explanation of adaptations by
natural selection: (i) individuals in a population have varied

characteristics; (ii) their reproductive success correlates with these
characteristics; (iii) the characteristics are inherited. The last
principle, of inheritance, has always been the most contentious. At
the time of Darwin and Wallace, its mechanisms were unknown,
and fundamental questions, such as the role of the environment in
the production of new, adaptive traits, were unsettled. Adaptation
by natural selection does not, indeed, require any causal relation
between the environment and newly generated traits, but neither
does it exclude it; Darwin, for instance, included as potential
sources of variations the direct and indirect effects of the envi-
ronment, as well as the use and disuse of organs, in line with ideas
previously propounded by Lamarck (1, 2).
Prominent followers of Darwin, however, came to exclude the

possibility of inheritance of acquired characteristics. This view-
point was notably formulated by Weismann in his theory of
continuity of the germplasm (3). Experiments of amputations,
which showed no incidence on the progeny, supported it. At the
end of the nineteen century, it had became a central tenet of
“neo-Darwinism” (4). Half a century later, the “Modern Syn-
thesis,” which produced a synthesis between evolution theory
and Mendel’s laws of inheritance (5), reached the same con-
clusion: it promoted a clear distinction between genotypes,
inherited but only subject to random variations, and phenotypes,
affected by the environment but not directly transmitted. These
conclusions were based on studies in multicellular organisms, but
subsequent experiments with microorganisms, which found that
adaptive variations can precede changes of environmental con-
ditions (6), further reinforced the conviction that biological
evolution is mainly fueled by random variations. At a molecular
level, finally, once prevalent instructional theories of enzymatic
adaptation or antibody formation also came to be discarded in
the 1950s and 1960s (7, 8). At this time, the successes of molec-
ular biology in unraveling the mechanisms of heredity elevated
a molecular refutation of Lamarckism, the unidirectional flow of
information from DNA to proteins, as its “central dogma” (9).

Concurrent views, emphasizing the role of environmentally in-
duced variations in evolution, have had several insightful propo-
nents (10–13), but were also endorsed by dubious yet influential
supporters (14). Examples of inherited acquired characteristics
have, however, been long known, from the transmission of culture in
humans to the uptake of extracellular DNA by bacteria. However,
only recently have we gained a fuller recognition of the diversity of
mechanisms for generating and transmitting variations (15). In ad-
dition to the well-recognized roles of mutations and recombinations
of chromosomal DNA, a nonexhaustive list would include the
transmission of acquired chromatin marks such as DNA methyla-
tion, the transmission of small interfering RNAs, the transmission of
conformational states of molecules such as prions, or, at the cellular
level, the transmission of self-sustaining states of gene regulation,
and, at the organismal level, so-called parental effects (16).
Inheritance, long treated as an autonomous and universal

mechanism to be experimentally characterized and then integrated
to evolutionary theory, thus appears to consist of multiple and
parallel systems whose origins and implications are to be explained
within an evolutionary framework. The problem of a synthesis of
inheritance with evolution is thus now doubled by the problem of
the synthesis of inheritance by evolution. With this problem in
view, we propose here a mathematical model where the adaptive
values of different schemes for generating and transmitting var-
iations can be compared. The model treats inheritance as a trait on
which selection can act, although not in a direct way: systems of
inheritance indeed pertain to the transmission of traits between
individuals, and estimating their adaptive value therefore requires
analyzing the dynamics of a population over several generations.
In this sense, the adaptation of a mode of inheritance is necessarily
of “second order”—a form of “evolvability.”
Our model thus quantifies the adaptation of different modes

of inheritance by considering the long-term growth rate of
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populations. The model is schematic: it relies on an abstraction
from physical implementations, along the example of Shannon’s
model of communication (17). The model thus defines the “ge-
notype” as what is transmitted between successive generations,
and the “phenotype” as what determines the survival and re-
production of an individual, with no reference to their material
support. As a consequence, our distinction between genotypic
and phenotypic variations is not equivalent to the often-made
distinction between genetic and epigenetic inheritance; any
transmitted character, whether DNA encoded or not, will be-
long, from the standpoint of our model, to the genotype.
In general, few things are excluded in biology if they are not

physically impossible—but some have been proposed to be, for
instance, the reverse flow of information from phenotype to
genotype. Regardless of the question of whether this pro-
hibition is indeed universally true or not, it is interesting to
consider whether any such prohibition could logically result
from natural selection. More generally, under what conditions
various mechanisms for generating and transmitting variations
may be favored or suppressed by natural selection itself? We
illustrate the versatility of our model by examining this question
in the context of three biological phenomena that are often
considered to be either irrelevant to evolution, or absent be-
cause “forbidden”:

i) Noninherited variations, sometimes also referred to as phe-
notypic “noise,” and commonly thought to have no evolution-
ary implications; for instance, in the first chapter of The
Origin of Species (1), Darwin states: “Any variation which is
not inherited is unimportant for us.” Considering that new
variations may generally be introduced at the genotypic and/or
at the phenotypic level, and may thus be transmitted to future
generations either totally, in part or not at all, what scheme is
most conductive to adaptation? Does natural selection gener-
ically favor “developmental canalization,” i.e., a reduction of
phenotypic differences between individuals inheriting a com-
mon genotype? Our model will highlight how the answer
depends on the statistical structure of the environment, and
how nontransmitted variations may under some conditions be
more beneficial than transmitted variations.

ii) The absence of reverse flow of information from phenotype to
genotype, advocated by Weismann, but now challenged even
in the species where it is best established (18). Given that
isolating the transmitted genotype from the phenotype may
involve dedicated mechanisms, can we characterize the con-
ditions under which natural selection favors their presence?

iii) The nondirected nature of new adaptive variations, associ-
ated with the refutation of any “Lamarckian” mechanism.
Nothing in principle prevents the environment from inducing
the generation of new traits, either at the phenotypic level, or
at the genotypic level: the first effect, known as “plasticity,”
has long been recognized (19), and the second one, long
thought to be forbidden, is also observed (20). Are there
nevertheless conditions under which direct integration of in-
formation into the transmitted genotype is logically excluded
as a consequence of natural selection?

Despite the fundamental nature of these questions, no pre-
vious formal model exists, to our knowledge, that addresses them
in a common and analytically tractable framework. Our model,
however, is not without precedents: it is in line with traditional
models of quantitative genetics (21) and relates to models of sto-
chastic control in engineering (22). Processing unreliable infor-
mations from the past and present to confront an uncertain future,
which may be seen as the fundamental “function” of systems of
inheritance, is indeed at its core a question of control. We thus
proposed previously that evolution in fluctuating environments
could be viewed as a problem of stochastic control (23); this view
is supported here by a formal analogy between our model and a
basic algorithm in stochastic control theory, the Kalman filter (24).

Model
We provide in this section a general presentation of the model
and derive its solution in a simple case. The general solution follows
the same principles and its details are included in SI Appendix.

Definition. The model considers a population of asexually repro-
ducing individuals where each genotype is characterized by an “at-
tribute” γ. The genetic or epigenetic nature of this attribute is
irrelevant: we are only concerned with the origins of the transmitted
information, either inherited, randomly produced, or environmen-
tally induced, irrespective of its material support. In the parlance of
Weismann, γ would be termed the “germplasm,” and, in the par-
lance of population genetics, the “breeding value.” At each time
step, corresponding to a generation, each individual with attribute γ
reproduces and is replaced by ξ offsprings sharing as common at-
tribute γ′, with possibly ξ= 0, in which case we conventionally define
γ′= γ. (The model could be generalized to produce offsprings with
different attributes, but we purposely ignore this unessential com-
plication.) The individuals are noninteracting and the generations
nonoverlapping. The values of ξ and γ′ can depend on γ and on the
current environmental state, which fluctuates independently of the
population and is characterized by a variable xt. This dependency
can be stochastic and is generally given by a stochastic kernel
Aðξ; γ′jγ; xtÞ with the following properties: Aðξ; γ′jγ; xtÞ ≥ 0 andP

ξ

R
dγ′  Aðξ; γ′jγ; xtÞ= 1 for all γ; xt.

Population Dynamics. For a given series of environmental states
ðx1; . . . ; xTÞ, we define ntðγÞ as the expected probability density
function of the attribute γ in the population at time (generation)
t, normalized to

R
dγ  ntðγÞ= 1 at any t. It satisfies a recursive

equation which, more formally, is the recursion for the first
moment of the branching process:

nt+1
�
γ′
�
=W−1

t

Z
dγ  
X
ξ

ξ  A
�
ξ; γ′jγ; xt

�
  ntðγÞ; [1]

where Wt is a normalization ensuring
R
dγ′ nt+1ðγ′Þ= 1,

Wt =
Z

dγ′
Z

dγ  
X
ξ

ξ A
�
ξ; γ′jγ; xt

�
ntðγÞ: [2]

Wt represents the factor by which the population increases, on
average, between generations t and t+ 1.
Starting from a large number N0 of individuals at time t= 0,

the expected total number NT of individuals at time T is thus the
following:

NT = ∏
T

t=1
Wt  N0: [3]

Over T generations, this results in the following growth rate:

Λ ≡
1
T
ln
NT

N0
=
1
T

XT
t=1

lnWt: [4]

We are interested here in the long-term limit T→∞, under the
assumption that the population does not go extinct. (We assume
that the branching process is supercritical and ignore the fluctu-
ations associated with small populations, which is justified in the
large t limit when the population is exponentially growing.) This
limit is mathematically well defined when the environment fol-
lows an ergodic process, in which case we have the following:

Λ= lim
t→∞

E½lnWt�; [5]

where E indicates an expectation with respect to the environ-
mental fluctuations (25) (Λ is also known as the quenched Lyapunov
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exponent for the underlying branching process in a random
environment).
The long-term growth rate Λ is a “group-level” property, at-

tached to the population as a whole rather than to any particular
individual. It is relevant for the comparison of different schemes
of inheritance because of the following property (23): given two
populations, characterized by kernels A1 and A2, and given an
ergodic environmental process, if ΛðA1Þ>ΛðA2Þ> 0, then, al-
most surely, limt→∞ lnN2

t =N
1
t = 0, where N1

t and N2
t represent

the respective sizes of the two populations at time t. In other
words, Λ predicts the long-term outcome of a competition be-
tween populations characterized by different kernels A. This ar-
gument assumes an exponentially growing population, but its
conclusions are equally valid in presence of a constraint on the
total population size, in which case the population with smallest
growth rate almost surely becomes extinct.

Long-Term Growth Rate. Different systems of inheritance are rep-
resented in the model by different kernels A. In the simplest case,
schematically represented in Fig. 1A, the environment affects re-
production but not transmission, and the kernel A is factorized into
the product of a reproduction kernel R and an heredity kernel H,

A
�
ξ; γ′jγ; xt

�
=Rðξjγ; xtÞH

�
γ′jγ�: [6]

From now on, for simplicity, we also assume a single continuous
attribute γ ∈R, although the model remains analytically solvable
in the multidimensional case.
We take the heredity kernel to be Gaussian,

H
�
γ′jγ�= 1�

2πσ2H
�1=2 exp

 
−
�
γ′− γ

�2
2σ2H

!
: [7]

This corresponds to a standard assumption of additivity in
population genetics: γ′= γ + νH , with νH a normally distributed
random variable with variance σ2H , νH ∼Nð0; σ2HÞ (this relation
is extended below to include a possible reversion toward a mean,
i.e., γ′= λγ + νH with λ< 1).
To compute ntðγÞ, as in Eq. 1, we only need to specify the first

moment of the selection kernel Rðξjγ; xtÞ. We assume here that
the expected number of offsprings of an individual with attribute
γ in environment xt is the following:

hξiγ;xt ≡
X
ξ

ξ  Rðξjγ; xtÞ= exp

 
rmax −

ðγ − xtÞ2
2σ2S

!
: [8]

Here, the difference γ − xt captures the “fitness” of an individ-
ual with attribute γ to the current criterion of selection xt. Be-
cause in the simplest version of the model, depicted in Fig. 1A,
there is no distinction between inherited genotype and pheno-
type, the attribute γ can be thought as a phenotypic trait and the
“state of the environment” xt is thus being defined relative to
the population, as the value of the trait that is optimal in this
environment (for instance, in a classical simplistic picture of
adaptation, xt would be associated with the height of acacias
and γ with the length of the giraffe neck). The variance σ2S
describes the selectivity of the environment; σ2S = 0 means that
only one phenotype can survive at any given time, whereas σ2S
large means that many different phenotypes can survive. Finally,
rmax is the maximal reproductive rate per generation for the species;
in particular, rmax > 0 is a necessary condition for the population not
to go extinct. [rmax affects the growth rate Λ only through an addi-
tive constant, i.e., ΛðrmaxÞ=Λðrmax = 0Þ+ rmax, and therefore plays
no role when comparing different inheritance schemes.]
Starting at t= 0 from a large population with a normally

distributed attribute, n0ðγ0Þ=Gσ20
ðγ −m0Þ, the distribution of γ

remains normally distributed at all times, i.e., ntðγÞ= Gσ2t
ðγ −mtÞ

for all t; more generally, starting from any distribution n0ðγ0Þ,
the distribution of the trait in the population will converge to a
Gaussian. Assuming that it does not go extinct, the long-term
evolution of the population can thus be described in terms of just
two parameters, the meanmt ≡ hγit and variance σ2t ≡ hðγ −mtÞ2it
of γ at time t.
From Eq. 1, it follows that these two parameters satisfy the

following:

mt+1 =mt + h2t ðxt −mtÞ; [9]

σ2t+1 = h2t σ
2
S + σ2H ; [10]

where the so-called heritability h2t = σ2t =ðσ2S + σ2t Þ represents the
contribution of the genotype to the total phenotypic variance
(26) and satisfies here the following recursion:

h2t+1 = 1−
1

1+ h2t + σ2H
�
σ2S
: [11]

Eq. 1 also yields in terms of these variables Wt, the factor by
which the population size increases between times t and t+ 1,

lnWt = rmax +
1
2
ln
�
1− h2t

�
−
1
2
�
1− h2t

� ðmt − xtÞ2
σ2S

: [12]

Stochastically Fluctuating Environments. Up to here, the equations
are valid for any kind of environmental process. If we now as-
sume an ergodic environment, we obtain, by taking the t→∞
limit, a formal expression for the long-term growth rate,

Λ= rmax +
1
2
ln
�
1− h2∞

�
−
1
2
�
1− h2∞

�
lim
t→∞

E

h
ðmt − xtÞ2

i
σ2S

; [13]

where h∞ represents the fixed point of ht in Eq. 11. Λ is the sum
of two terms: the first can be interpreted as the “genetic load”
due to stabilizing selection and the second as the “evolutionary

A

B

Fig. 1. (A) Simple model. In this model, no distinction is made between
inherited genotype and phenotype: both are characterized by a single
attribute γ. The number ξ of offsprings and the attribute γ′ that they
transmit are independently specified by two stochastic kernels, the “re-
production kernel” Rðξjγ,xtÞ and the “heritability kernel” Hðγ′jγÞ, where γ
represents the attribute inherited by the individual and xt the current
state of the environment. (B) General model. This model includes explicitly
a phenotype ϕ derived from the inherited genotype γ through a stochastic
kernel Dðϕjγ,ytÞ representing “development.” This kernel, and the kernels
Rðξjγ,xtÞ and Hðγ′jγ,ϕ,ztÞ, can depend on external, environmental factors,
xt , yt , zt . The three red arrows represent respectively developmental
plasticity (P), phenotype-to-genotype feedback (F), and direct Lamarckian
effects (L).
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load” due to the lag between the mean phenotype mt and the
optimal phenotype xt. The dynamics of mt has generally no fixed
point (unless the environment is constant), but, if the environ-
ment is ergodic, it has a stationary distribution and hence
E½ðmt − xtÞ2� has a limit for t→∞.
Λ may be explicitly computed for several stationary processes.

Two aspects of the environment are particularly relevant when
studying the adaptive value of mechanisms of heredity: the am-
plitude σ2E of the environmental fluctuations, and the scale τE of
their temporal correlations. As a simple dynamical process that
encapsulates these two elements, we consider the following:

xt = axt−1 + bt;  with  bt ∼N �0; σ2X�: [14]

It corresponds to fxtgt being generated by a stationary Gaussian
Markov process with transition kernel Pðxtjxt−1Þ=Gσ2X

ðxt − axt−1Þ.
The parameter σ2X controls the degree of stochasticity and the
parameter a the degree of correlation between successive environ-
ments; assuming a ≤ 0< 1, the process followed by xt has a station-
ary distribution, namely Nð0; σ2X ð1− a2Þ−1Þ. The amplitude σ2E
and relaxation time τE of this process are thus defined by the
following:

σ2E ≡
σ2X

1− a2
;   τE ≡ −

1
ln a

; [15]

such that

E½xt+t′xt′�= σ2E   e
−t=τE : [16]

This follows from the definition xt+1 = axt + bt with E½bt�= 0 and
E½b2t �= σ2X , and the assumption that xt has a stationary distribution:
σ2E ≡E½x2t �=E½x2t+ 1�= a2E½x2t �+E½b2t �= a2σ2E + σ2X , and therefore
σ2E = σ2X=ð1− a2Þ. Similarly, from E½xt+t′xt′�= atE½x2t′�, it follows that
E½xt+t′xt′�= σ2Ee

−t=τE with τE =−ðln aÞ−1. This stochastic process is
known as an autoregressive AR(1) model in signal process-
ing and corresponds in physics to a discrete-time Ornstein–
Uhlenbeck process.
With this choice for the environmental temporal dynamics, we

can show that mt itself is normally distributed and we can com-
pute limt→∞E½ðmt − xtÞ2� (SI Appendix). The calculation leads to
a long-term growth rate Λ of the following form:

Λ= rmax +Λ0

�
a;
σ2H
σ2S

;
σ2E
σ2S

�
: [17]

Without loss of generality, we can therefore assume that σ2S = 1.
Under this assumption, the expression for Λ0 is given by the
following:

Λ0
�
a; σ2H ; σ

2
E

�
=
1
2
ln α−

ð1− aÞα
ð1+ αÞð1− aαÞσ

2
E;

with  α=
2

2+ σ2H +
�
σ2H
�
σ2H + 4

��1=2;
[18]

where the relation between α and σ2H can also be inverted to give
σ2H = ð1− αÞ2=α.
Not considering the additive parameter rmax, only three

parameters, a, σ2E, σ
2
H , are needed to characterize this simple

model. The first two parameters pertain to the environmental
process, with a representing temporal correlations ða= e−1=τE Þ
and σ2E its stationary variance (in units of σ2S), whereas σ

2
H (in the

same units) describes the stochasticity of inheritance (akin to
a mutation rate).

How Much Variation to Introduce? This model allows us to address
a first question pertaining to the evolution of heredity, the evo-

lution of mutation rates: what is optimal degree of variation for
a population adapting to a varying environment? This problem
has been examined in many previous theoretical studies (27–
30) and fueled by observations and experiments with microbial
populations showing strikingly variable mutation rates (31).
Within our model, the problem amounts to determining the
value σ̂2H of σ2H that optimizes the growth rate Λ for given
environmental parameters a; σ2E. The results of this optimiza-
tion are shown in Fig. 2A: whereas larger environmental fluc-
tuations are conducive to larger mutations rates as may be
expected, the dependence into the temporal correlation is less
intuitive, with a nonmonotonic dependence on a for σ2E < 2. A
transition line, given by σ2E = 2ð1− aÞ=ð1+ aÞ and represented
in Fig. 2B, separates environmental situations where variations
tend to be suppressed, σ̂2H = 0, and environmental situations
where they are favored, σ̂2H > 0.
The approach of optimizing the growth rate Λ with respect

to one of its parameters, here σ2H , is predicated on the as-
sumption that a population for which this parameter mutates
at a slow rate will eventually evolve toward the value of this
parameter optimizing Λ. Fig. 2C shows that this assumption is
indeed verified in numerical simulations of the population
dynamics where σ2H is taken to be part of the genotype and
transmitted as σ′H =maxð0; σH + ηÞ with η∼Nð0; σ2MÞ (the max
is here to ensure that σH ≥ 0). We performed these simulations
by imposing a maximum total population size (SI Appendix), and
the results of Fig. 2C therefore also demonstrate that the as-
ymptotic growth rate Λ can describe well the behavior of finite
populations. Finally, the same simulations repeated with non-
Gaussian distributions for the selection, the mutations or the
environmental fluctuations lead to similar results (SI Appendix,
Fig. S1), indicating that our conclusions are not crucially de-
pendent on the Gaussian assumptions that we make for com-
putational convenience.

Generalizations
The previous formulae solve the simple model schematically
represented in Fig. 1A. A generalization of this model, depicted
in Fig. 1B, explicitly distinguishes between the inherited geno-
type γ and the phenotype ϕ of an individual. The phenotype
arises from the inherited genotype through a process of “de-
velopment,” represented by a stochastic kernel D, which can
show some dependence on the external environment, i.e., de-
velopmental plasticity (arrow P in Fig. 1B). The generalized
model also incorporates the possibility of acquiring informa-
tion from the environment and directly modifying the heri-
tability kernel H (arrow L). The latter can also be influenced
internally by a feedback from the phenotype to the transmitted
genotype (arrow F). This more general model, several limits of
which we analyze in the following sections, can also be solved
analytically.
More precisely, the general model is characterized by the

following:

γ′= λγ + κzt +ωϕ+ νH ;   νH ∼N �0; σ2H�;
ϕ= θγ + ρyt + νD;   νD ∼N �0; σ2D�;

hξiγ;xt = exp
h
rmax − ðϕ− xtÞ2

�
2σ2S
�i
:

. [19]

The first equation specifies how the transmitted genotype γ′
depends on the inherited genotype γ, on some external informa-
tion zt coming from the environment and on the current pheno-
type ϕ. The second equation defines how this current phenotype
depends on the inherited genotype γ and on some possibly avail-
able external information yt. The third equation, finally, gives the
expected number of offsprings for individuals with phenotype ϕ
in environment xt.
The description of the model is completed by the equations

governing the dynamics of the environment. As before, it is sup-
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posed to be fixed (quenched) independently of the dynamics of
the population:

xt = axt−1 + bt; bt ∼N �0; σ2X�;
yt = xt + b′t ; b′t ∼N

�
0; σ2Ip

�
;

zt = xt + b″t ; b″t ∼N �0; σ2Iℓ�:
[20]

The signals yt and zt are thus assumed to derive from xt via
additive white Gaussian noise channels, one of the simplest mod-
els of signal transmission.
Although involving more parameters, the derivation of the

solution for this general model follows the same principles as
for the simple model presented previously (SI Appendix). We
take advantage of an analytical formula for its growth rate Λ
to analyze three particular variants of the model, which ad-
dress the three specific questions raised in the introduction.
In each case, we characterize the most adaptive scheme for
generating and transmitting variations by considering the
value of the parameters that optimize Λ—the expected out-
come of an evolutionary dynamics where these parameters
evolve on a timescale longer than the characteristics timescale
τE of the environment. [It can be shown that Λ is concave with
respect to its parameters (32), implying an absence of local
maxima into which the evolutionary dynamics could otherwise
be trapped.]

Where to Introduce Variation? The introduction of new variations
is a requirement for sustained evolution: a population into which
no new variations are introduced will eventually become mono-
morphic even in absence of selection, simply as a consequence of
“random drift.” However, if the characters of the individuals are so
new as to be uncorrelated with those of their parents, inheritance
is negated, and adaptation by natural selection impossible.
Therefore, an appropriate “degree” of new variations must lie
between these two extremes. This logical conclusion raises a first
class of questions, which we started to address with the model of
Fig. 2: What is this intermediate degree of variations? What sets
its value? In addition, if an optimal degree exists, can it be selected
for? Several biological observations hint at a positive answer to
this last point: a complex molecular machinery has for instance
evolved to ensure a faithful replication of DNA, and thus to “set”
its mutation rate; moreover, not all genes are treated equally: in
bacteria, for example, the positioning of genes on the leading or
lagging strand of the chromosome, where they are subject to
different mutation rates, is correlated to the nature of the se-
lective pressure that they experience (33).
A second class of questions follows from noticing that new

variations may not only vary in degree but also in “nature.” In
particular, new variations may be phenotypic, thus affecting
survival and reproduction but not being transmitted to the
next generation, or/and genotypic, thus being transmitted to

the next generation but not directly affecting survival and re-
production. How different are these two (nonexclusive) types
of variation from an evolutionary standpoint? Is one type of
variations more advantageous than the other? Or, does each
have its own optimal degree? Here again, several observations
support the biological relevance of these questions. Both types
of variations are indeed found simultaneously in every living
organism. An example of universally shared genotypic varia-
tions is provided by DNA mutations, whereas the so-called
nongenetic individuality of bacteria (34) is an example of
phenotypic variations. The latter, although often assimilated to
noise, may in fact confer a selective advantage to the organisms (35).
Addressing questions about the degree and nature of new var-

iations requires a model that is both quantitative and rich enough
to allow for nontrivial selective pressures. Our model meets these
criteria; in fact, it is even sufficient to consider its simplified ver-
sion, in which all three mechanisms depicted by red arrows in Fig.
1B, namely plasticity, feedback, and Lamarckian effects, are ab-
sent. This limiting case, represented in Fig. 3, is described by the
following equations:

γ′= γ + νH ;    νH ∼N �0; σ2H�;
ϕ= γ + νD;    νD ∼N �0; σ2D�: [21]

In this particular instance of the model (obtained from the
general model by taking λ= 1, θ= 1, κ= 0, ω= 0, ρ= 0), new
variations are generated independently of the state of the envi-
ronment and are introduced at two levels: at the genotypic level,
through the random variable νH with variance σ2H , and at the
phenotypic level, through the random variable νD with variance
σ2D. The two possible types of new variations are thus tunable at
various degrees. By studying how the long-term growth Λ may
be optimized with respect to σ2H and σ2D, we can thus analyze
quantitatively the adaptive value of these two sources of varia-
tion as a function of the characteristics of the environment, its
temporal correlation a and its stochasticity σ2E.
Specifically, we analyze here the values (σ̂2H , σ̂

2
D) of the variables

σ2H and σ2D that optimize the long-term growth Λ, for given values
of ða; σ2EÞ (fixing without loss of generality σ2S = 1); this corre-
sponds to the expected outcome of a competition between pop-
ulations characterized by different values of σ2H and σ2D, or,
equivalently, to the expected outcome of an evolutionary dynamics
where σ2H and σ2D are themselves slowly varying. The results,
presented in Fig. 4 A and B, show that the nature of the most
adaptive variations indeed depends on the statistics of the envi-
ronment. For instance, phenotypic noise ðσ2D > 0Þ is preferred over
genotypic noise ðσ2H > 0Þ for weakly correlated environments (low
a). The optimization can be performed analytically to derive a
phase diagram with distinct phases, defined by the presence or
absence of phenotypic or genotypic stochasticity in the optimal

A B C

Fig. 2. How much variations to introduce? (A) For the simple model described by Eq. 18 and depicted in Fig. 1A, optimal value of the degree σ2H of
genotypic variations as a function of σ2E , the amplitude of the environmental fluctuations and a, representing the characteristic timescale τE =−ðln aÞ−1 of
their relaxation. (B) “Phase diagram” for the nonzero optimal values of σ2H as a function of ða,σ2EÞ. (C ) In red, optimal values of σ2H as a function of a for
σ2E = 1. In blue, results of numerical simulations of the dynamics of a population in which σ2H varies between parent and offspring as σ′H =maxð0,σH + ηÞwith
η∼Nð0,σ2MÞ; the mean and SD of σ2H are computed over T = 104 generations of a population of size N≤103, with σ2M = 10−5 (see also SI Appendix, Fig. S1, for
other values of σ2M).
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solution. The different boundaries, shown in Fig. 4E, are given by
the following:

a= 1=3 ðblackÞ;    σ2E =
1
4

�
1+ a
1− a

�2

 ðblueÞ;

σ2E = 2
�
1− a
1+ a

�
 ðredÞ;   σ2E = 1 ðgreenÞ;

[22]

with the central point at a= 1=3 and σ2E = 1. When σ2E < 1, as in
Fig. 4C, we thus encounter two phases as a is varied; when σ2E > 1,
as in Fig. 4D, three phases are traversed.
A first conclusion from these results is that a population can be

adapted to a fluctuating environment (here have optimal σ2H and
σ2D) even though its individuals are not undergoing any change: this
is the case for the regions of the phase diagram where σ̂2H = 0,
corresponding to a population with a homogeneous and constant
genotype. In this sense, adaptation of a population to a fluctuating
environment does not require variations in the attributes of the
individuals. However, an absence of evolution does not necessarily
imply an absence of diversity. When σ̂2H = 0 but σ̂2D > 0, the pop-
ulation is phenotypically diverse, although rather than transmitted
from one generation to the next, the same diversity is reproduced at
each generation. Moreover, a population may also be adapted to
a fluctuating environment without showing any diversity: for small
environment fluctuations, we find indeed that σ̂2H = 0 and σ̂2D = 0
(Fig. 4E); in this case, natural selection favors the suppression of
any variation. The diversity of the population, either genotypic or
phenotypic, can be more precisely quantified within the model:
we thus have ςγ ≡ E½ðγ −mtÞ2�=σ2S = ð1− αÞ=α, for the genotypic
diversity, and, ςϕ ≡ E½ðϕ−mtÞ2�=σ2S = ð1− αÞ=α+ σ2D for the pheno-
typic diversity.
Although new variations are beneficial when the fluctuations of

the environment are large enough, our model predicts that natural
selection should favor their introduction at different levels,
depending on the statistical structure of these fluctuations. As
indicated in Fig. 4E, phenotypic variations are suppressed ðσ̂2D = 0Þ
when the environmental stochasticity is small enough or the en-
vironmental correlation large enough: this may be interpreted as
a selection for “canalization,” i.e., reduction of the phenotypic
diversity of genotypically identical individuals, a phenomenon in-
deed observed in biological organisms (13). Genotypic variations
are suppressed ðσ̂2H = 0Þ, however, when the environment is not
strongly correlated (a small). This may be rationalized by noticing
that nontrivial inheritance is relevant only when successive gen-
erations share correlated selective pressures.
The study can be extended to an environment undergoing

directed changes, xt = ct+ bt with bt ∼Nð0; σ2EÞ (SI Appendix). In
this case, we find that nonzero genotypic variations σ̂2H > 0 are
always needed to keep up with the environmental changes, but
a transition between phenotypic canalization ðσ̂2D = 0Þ and phe-
notypic plasticity ðσ̂2D > 0Þ is still observed as the environmental
fluctuations σ2E increase, or as the speed c of the environmental
changes decreases, as summarized in Fig. 4F.
Living organisms do not harbor a single trait, but many, each

potentially subject to a selective pressure with a different statistical

structure. For instance, in bacteria, the strength of selection may
be very different between central metabolism and mechanisms of
resistance to antibiotics. Our model suggests that this diversity of
selective pressures may be responsible for the evolution of the
diversity of ways in which new traits are generated and trans-
mitted. However, our model is obviously extremely schematic and
does not account for a number of features that affect the evolution
of mechanisms of inheritance. In particular, it does not consider
the cost of these mechanisms, which may strongly limit their actual
diversity: suppressing any variation by error corrections, check-
points, canalization, etc., may be prohibitively expensive, and
evolving a different system of inheritance for every trait simply
impossible (any mechanism for introducing variations in a trait
defines a new trait into which variations may be introduced).

When to Separate Phenotype and Transmitted Genotype? The pre-
vious version of the model assumes an independent germ line,
with a transmitted genotype γ′ that is not influenced by the phe-
notype ϕ. Such a separation between a germplasm γ and a “soma”
ϕ is central to the view that new traits are exclusively generated by
random mutations in the gametes, independently of any event
occurring during the lifetime of the individual. This separation,
however, cannot be taken for granted, and is in fact absent in
many if not most living organisms, including notably plants (36).
However, mammals do seem to possess specific mechanisms to
enforce a separation; for instance, murine primordial germ cells
undergo resetting and erasing of maternal and paternal imprints,
genome-wide DNA methylation, extensive histone modifications,
and inactive X-chromosome reactivation (18). As a very first step
in trying to understand the origin of such mechanisms, it is in-
structive to abstract from the many constraints that may limit the
evolution of systems of inheritance, and look for the way in which
genotypic and phenotypic features should ideally be combined to
ensure a maximal growth rate of the population; if a “Weismann’s
barrier” segregating a germ line from the soma is never found in
such conditions, this implies that its origin must reside elsewhere.
We follow here this approach by examining within model the se-
lective value of a feedback from phenotype to transmitted genotype.
Three factors potentially contribute to the genotype γ′ transmitted

to the offsprings: the genotype γ inherited from the parent, the
phenotypeϕ of the individual, and random variations νH . To analyze
their relative adaptive value, we study the model depicted by Fig. 5,
which allows for different combinations of these three elements:

γ′= λγ+ωϕ+ νH ;    νH ∼N �0; σ2H�;
ϕ= γ + νD;      νD ∼N �0; σ2D�: [23]

Each factor is controlled by a parameter, λ for γ, ω for ϕ, and σ2H
for νH . We thus consider optimizing the long-term growth rate Λ
over ðσ2H ; λ;ωÞ, for various values of ða; σ2E; σ2DÞ, using the expres-
sion for Λ of the general model, with θ= 1, κ= 0, ρ= 0 [we con-
sider λ ≥ 0 and ω ≥ 0; see also SI Appendix, Fig. S2, for an
alternative analysis where the optimization is performed over
discrete values, ðλ;ωÞ∈ f0; 1g2].
The result of a numerical optimization of Λ are presented in

Fig. 6. They show that a feedback from phenotype to trans-
mitted genotype is prevented ðω̂= 0Þ in two limits: the limit of
uncorrelated environments, τE → 0 ða→ 0Þ, and the limit of
deterministic environments σ2E → 0. In the first limit, λ̂ vanishes
as well; hence the absence of feedback does not imply an iso-
lated germ line, but simply an absence of nontrivial heredity
(for small a but large σ2E, the solution σ̂2H > 0, λ̂= 0, ω̂= 0 indi-
cates that only noise is transmitted to the offsprings). The system
of inheritance most reminiscent to Weismann’s scenario is
obtained in the limit of constant environments ðτE; σ2EÞ→ ð∞; 0Þ
½ða; σ2EÞ→ ð1; 0Þ�, suggesting that a separation of germplasm
from soma is beneficial only for those aspects of the phenotype
subject to nonfluctuating selective pressures (“housekeeping”
genes, for instance).

Fig. 3. Where to introduce variation? This question is addressed within
a model where the two sources of noise, the developmental kernel DðϕjγÞ
and heredity kernel Hðγ′jγÞ, are jointly optimized to yield the largest long-
term growth rate. The optimization is performed over the two parameters
σ2D and σ2H, which define DðϕjγÞ and Hðγ′jγÞ by the relations ϕ= γ + νD and
γ′= γ + νH, with νD ∼Nð0,σ2DÞ and νH ∼Nð0,σ2HÞ.
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Where to Acquire Information? In the two previous models, the
role of the environment is confined to selection, and any new
variation is introduced independently of the environmental
state. Examples, however, abound of living organisms generat-
ing new traits that are correlated with the environment. It is thus
well recognized that the current phenotype of an individual is
affected not only by the genotype received from its parents but
also by the environment in which it develops; such a variation,
which may be adaptive, is generally referred to as “plasticity.”
As already mentioned in the introduction, the question of
whether environmentally induced variations can be transmitted
to the progeny was, and still remains, a subject of hot debates.
This possibility was central to Lamarck’s theory of evolution,
and is often referred to as “Lamarckism.” Evolution by natural
selection does not require it, but it does not exclude it. Several
examples of environmentally induced traits have indeed been
observed. Proving that such traits confer a selective advantage
is generally delicate, but a particularly striking example is pro-
vided, for instance, by the bacterial immune system called
CRISPR (37); this system relies on the insertion of phage-specific
sequences into bacterial genomes and has been shown to protect
against phage infection the bacteria that inherit them from their
parent. This example implies a specific mechanism for incor-
porating and exploiting the environmental “signal” (here, the
presence of a particular strain of phage). The constraints to which
the evolution of such mechanisms are subject are determining but
potentially nongeneric, and, in any case, difficult to model. Here,
we consider a thought experiment (or Gedankenexperiment),

where we assume a mechanism for incorporating external signals,
but question the way in which it is optimally “plugged in.” This
approach allows us, without discussing the mechanisms them-
selves, to compare the Darwinian and Lamarckian “modalities,”
and test the conjecture that each of them is tuned to a different
type of selective pressure (38).
We thus compare two models, where the same information

yt = xt + b′t with b′t ∼Nð0; σ2I Þ is available, but where it is either
processed at the phenotypic level (model P for “plasticity,” for
which σ2I = σ2Ip; Fig. 7A), or at the genotypic level (model L for
“Lamarckism,” for which σ2I = σ2Iℓ; Fig. 7B). Formally, model P is
described by the following:

γ′= λγ + νH ;        νH ∼N �0; σ2H�;
ϕ= θγ + ρyt + νD;     νD ∼N �0; σ2D�; [24]

thus corresponding to the general model with ω= 0 and κ= 0,
whereas model L is described by the following:

γ′= λγ + κyt + νH ;   νH ∼N �0; σ2H�;
ϕ= θγ + νD;      νD ∼N �0; σ2D�; [25]

thus corresponding to the general model with ω= 0 and ρ= 0.
We consider optimizing the long-term growth rate Λ over the
parameters that control the contributions of each factor: ðθ; λ; ρÞ
for model P, and ðθ; λ; κÞ for model L (considering here again
only positive values of these parameters).
The results of a comparison between the two models are

shown in Fig. 8, where, as a function of ða; σ2EÞ and for different
values of the fixed parameters σ2I ; σ

2
H ; σ

2
D, we present which of

the two models, P or L, yields the highest growth rate. The main
controlling parameter appears to be the correlation a (or
equivalently τE) of the environmental fluctuations, with the
Lamarckian modality systematically becoming more favorable
when this correlation is large, in line with the intuition that
transmitting acquired information is beneficial when the se-
lective pressure experienced by the offspring is sufficiently
similar to that experienced by the parents. Note that this
simple conclusion conceals in fact a much richer diversity of
strategies, revealed by considering the values of the parame-
ters optimizing the two models (SI Appendix, Fig. S3).

Connections
Of the many studies that share part of our intents or methods,
two lines of work stand out: (i) a different approach, based on
Price’s equation, has been proposed with the same goal of
uniting the various forms of inheritance within a common
mathematical framework (39, 40); (ii) a different problem,
pertaining to control in engineering, has been solved using
a closely related mathematical framework (24). We discuss
here the relations between our model and these two lines
of work.

Link to Price Equation. Price equation is a general formula, appli-
cable to any model of population dynamics, which uses a covariance
formalism to express the change in the mean value of a trait be-
tween successive generations (41). Being a mathematical identity, it

A B

D

F

C

E

Fig. 4. Where to introduce variation? (A) For the model described by Eq. 21
and depicted in Fig. 3, optimal values of the degree σ2H of genotypic variations
as a function of the environmental variables ða,σ2EÞ when optimizing jointly
over ðσ2H,σ2DÞ. (B) Optimal values of the degree σ2D of phenotypic variations as
a function of ða,σ2EÞ when optimizing jointly over ðσ2H,σ2DÞ. (C) Optimal values
of ðσ2H,σ2DÞ as a function of a for σ2E = 1=2. (D) Optimal values of ðσ2H,σ2DÞ as
a function of a for σ2E = 2. (E) Phase diagram for the optimal nonzero values of
ðσ2H,σ2DÞ as a function of ða,σ2EÞ. (F) Same phase diagram for an environment
undergoing directed changes, xt = ct+bt with bt ∼Nð0,σ2EÞ, in which case the
environmental parameters are ðc,σ2EÞ.

Fig. 5. When to separate phenotype and transmitted genotype? This
question is addressed within a model where the heredity kernel Hðγ′jγ,ϕÞ is
optimized. The optimization is made over the three parameters λ, ω, σ2H,
which define Hðγ′jγ,ϕÞ by the relation γ′= λγ +ωϕ+ νH with νH ∼Nð0,σ2HÞ.
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necessarily holds true. Its virtue is to provide a decomposition of
evolutionary change that can illuminate its origins; initially derived
for models of cooperation, it has contributed to clarify the nature of
group/kin selection (42). Applied in many other contexts, it has also
been used as a general mathematical framework for studying the
different possible modes of inheritance (39, 40). As for any other
model of population dynamics, a Price equation can be written for
our model (SI Appendix).
Price equation is, however, limited to a short-term description

of the dynamics: as it considers only the mean values of traits,
it cannot be iterated to describe changes in subsequent genera-
tions; this indeed requires the full distribution ntðγÞ. As illus-
trated in the previous sections, systems of inheritance may,
however, have qualitatively different implications in environ-
ments with different statistical structures. Only a long-term
analysis of the dynamics of a population can thus fully reveal
their evolutionary properties. In our approach, this is achieved
by coupling Price equation, the recursion over the mean mt of
the trait, Eq. 9, with a recursion over the variance σ2t of the trait,
Eq. 10, and by considering their asymptotic properties, which
consist of a fixed point for σ2t and a stationary distribution for mt.
Within the Gaussian assumptions that define our model, these
two quantities are sufficient to fully capture the population dy-
namics. More importantly, our formalism involves a central quantity
not present in covariance formalisms, the Lyapunov exponent Λ.
Because this quantity decides the eventual fate of two com-
peting populations, it allows us to associate with each scheme
of inheritance an adaptive value, and thus to derive the con-
ditions under which a given scheme confers a selective advantage
over the others.

Link to the Kalman Filter. At the core of adaptation is the problem
of anticipating the next state of the environment. From this per-
spective, different systems of inheritance can be considered as
different ways to share with the current generation the “knowl-
edge” accumulated, through natural selection, by the previous
generations. In a stochastically fluctuating environment, no system
of inheritance can, however, perform better than direct sensing
of the present environment by the individual that experiences it.
Sensors, when not altogether absent, are generically imperfect.
The individual with such an imperfect access to its current envi-
ronment thus faces a dilemma: it has to arbitrate between two
valuable but unreliable sources of information, the germplasm γ
inherited from the parent, and the cues yt or zt that it gained from
its own perception. Interestingly, the very same dilemma is en-
countered in various problems of engineering, such as for instance
the automatic guidance of aircrafts, where decisions must also

be made based on two potentially conflicting sources: the past
states of the system, and the signals from the sensors. A classical
algorithm for solving this problem is the Kalman filter (24). Maybe
not surprisingly, it involves the same essential mathematical
ingredients that make our model solvable: linearity and Gaus-
sianity. We present here a limit case of our model where the two
approaches formally coincide, thus revealing that the scope of the
concepts of inheritance extends beyond the study of biological
organisms.
Control in engineering typically involves a single system,

rather than a population of diverse individuals. We thus obtain
a formal analogy with the Kalman filter only when the pop-
ulation is perfectly homogeneous, and described by a single
“state” γ. This corresponds in our model to a limit where no
developmental noise is present, ϕ= γ (i.e., θ= 1, ρ= 0, σ2D = 0),
and where the environment is perfectly selective, σ2S = 0, so
that each and every individual has a common γ = xt. In this
limit case, the heredity kernel Ĥ that optimizes Λ can be
computed exactly for any stationary Markovian environmental
process (not necessarily Gaussian).
First, assuming that no external information is available,

with a model described by Aðξ; γ′jγ; xtÞ=Rðξjγ′; xtÞHðγ′jγÞ whereP
ξξ  Rðξjγ′; xtÞ= ermaxδðγ′− xtÞ (note the slight difference with

Eq. 6), and denoting by Pðxt+1jxtÞ the stochastic kernel defining
the environmental process, we have the following:

Λ= rmax + lim
t→∞

1
t
E½Pðxt+1jxtÞlnHðxt+1jxtÞ�

= rmax −HðPÞ−DðPkHÞ;
[26]

where HðPÞ denotes the entropy rate of the process P, and
DðPkHÞ the rate of relative entropy of P with respect to H (23).
[They are defined by HðPÞ=−limt→∞E½Pðxt+1jxtÞlnPðxt+1jxtÞ�=t
and DðPkHÞ= limt→∞E½Pðxt+1jxtÞlnPðxt+1jxtÞ=Hðxt+1jxtÞ�=t (43).]
The later verifies DðPkHÞ≥0, with DðPkHÞ= 0 if and only if
P=H (43). The growth rate Λ is therefore minimal for Ĥ =P,
an instance of the so-called proportional betting strategy (44),
which consists in matching the stochasticity of the environ-
ment. In particular, when taking a Gaussian environment with
Pðxt+1jxtÞ=Gσ2X

ðxt+1 − axtÞ, we obtain Ĥðγ′jγÞ=Gσ2X
ðγ′− aγÞ, cor-

responding to λ̂= a and σ̂2H = σ2X [Gσ2 (x) denotes a Gaussian
function with zero mean and variance σ2].
Assuming now that some information yt is available, which is

derived from xt as yt = cIxt + b′t with b′t ∼Nð0; σ2I Þ, we can extend
this result to a model with Aðξ; γ′jγ; xtÞ=Rðξjγ′; xtÞHðγ′jγ; ytÞ.

A

B

Fig. 6. When to separate phenotype and trans-
mitted genotype? (A) For the model described by Eq.
23 and depicted in Fig. 5, the values of ðσ2H,λ,ωÞ that
jointly optimize Λ are represented as a function of
the environmental parameters ða,σ2EÞ for a fixed
developmental noise σ2D = 1. (B) Same results pre-
sented as a function of a for three fixed values of σ2E .

Rivoire and Leibler PNAS | Published online April 24, 2014 | E1947

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

PH
YS

IC
S

PN
A
S
PL

U
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1323901111/-/DCSupplemental/pnas.201323901SI.pdf?targetid=nameddest=STXT


(We previously assumed cI = 1; κ and σ2I can indeed always be
rescaled to be in this case. We introduce here cI only to make
the correspondence with the Kalman filter where this rescaling
is generally not assumed.) This model, which corresponds to a
continuous version of the model studied in ref. 23, was pre-
viously analyzed in ref. 45. In the limit where

P
ξξ  Rðξjγ′; xtÞ=

ermaxδðγ′− xtÞ, the growth rate Λ is optimized by following a
Bayesian strategy:

Ĥ
�
γ′jγ; yt

�
=PXt+ 1jXt;Yt

�
γ′jγ; yt

�
; [27]

where PXt+ 1jXt;Ytðxt+1jxt; ytÞ denotes the conditional probability of
having the environmental random variable Xt+1 taking the value
xt+1 at time t+ 1 given that it took the value xt at time t, and that
the population observed yt at this time. With a Gaussian environ-
ment and Gaussian noisy channel, PXt+ 1jXtðxt+1jxtÞ=Gσ2X

ðxt+1 − axtÞ
and PYt jXtðytjxtÞ=Gσ2I

ðyt − cIxtÞ, this yields for Ĥðγ′jγ; ytÞ:

GððσI cIÞ−2 + σ−2X Þ−1
�
γ′−

aσ2I
σ2I + c2I σ

2
X
γ −

cIσ2X
σ2I + c2I σ

2
X
yt

�
: [28]

In this case, it is thus proved that the optimal form of the heritability
kernel H is Gaussian. The two coefficients λ̂= aσ2I=ðσ2I + c2I σ

2
X Þ and

κ̂= cIσ2X=ðσ2I + c2I σ
2
X Þ correspond exactly to the gains for the Kal-

man filter (24); in this context, they prescribe how the previous state

γ of the system and the newly acquired information yt must be
linearly combined to optimally define the subsequent state γ′ of
the system.
The formal correspondence with the solution to the Kalman

filter holds only in the limit of infinite selectivity σ2S → 0, where
the population is perfectly homogeneous at every time. This
limit, where the optimal scheme for processing information fol-
lows the Bayesian principles, is also the limit in which the value
of the information yt can be quantified by the usual concepts of
information theory (23). We may thus view our model as a gen-
eralization of the problem of stochastic control encountered in
engineering by incorporating biological features that are absent
in this context, notably a diverse and growing population, and
a distinction between genotype and phenotype. Reciprocally, the
Kalman filter has been extended along several lines since its
original formulation (46), and the mathematical formalisms thus
developed may suggest ways along which generalizations of our
model could be analyzed.

Conclusion
Classical models of population genetics take the mechanisms for
generating and transmitting new traits as given. Several previous
studies have extended these models to analyze how the mechanisms
of inheritance may themselves evolve, starting from works on the
evolution of mutation rates (27) and including, among several
other examples, studies of maternal effects (47), nongenetic
inheritance (48), plasticity and memory (49), and relationship
quantitative trait loci (50). Here, we proposed a simple model
to compare the adaptive value of different schemes for gen-
erating and transmitting variations in populations. Its analysis
indicates that different modalities of inheritance are favored
depending on the statistical structure of the fluctuations of the
environment. For an organism with various traits, each po-
tentially subject to a different selective pressure, this analysis
suggests that multiple inheritance systems operating in par-
allel may be selected for, consistently with observations.
Our model is schematic but captures a key feature of evolutionary

dynamics: information can be transmitted between generations along
different canals, and not only does the topology of these canals affect
the dynamics, but this topology can be itself subject to selection.
Certainly, themodel does not encompass the full diversity of possible
modes of inheritance, but it can still be extended along several lines
while retaining its analytical tractability. For instance, rather than
combining the inherited and the acquired information into a single
attribute, it could include two channels of transmission, one for the
germ line and another for somatic elements, as for instance in ref. 47;
because Gaussian formulae extend to multidimensional variables, the
model remains indeed solvable when considering the generation and
transmission of multiple traits. It can similarly be extended to account
for multiple timescales, for instance by introducing a temporal delay
between the developmental stage and the time of reproduction
(formally yt = xt−τ, for 0< τ< 1). Different environmental processes

A

B

Fig. 7. Where to acquire information? This question is addressed by com-
paring two models in presence of the same information yt = xt +b′

t with
b′
t ∼Nð0,σ2I Þ. (A) Model P, described by Eq. 24, where the information yt is

incorporated to the phenotype and where the growth rate Λ is optimized
with respect to the three parameters θ, λ, ρ, which define Dðϕjγ,ytÞ and
Hðγ′jγÞ by the relations ϕ= θγ + ρyt + νD and γ′= λγ + νH with νD ∼Nð0,σ2DÞ and
νH ∼Nð0,σ2HÞ, and fixed σ2D, σ

2
H. (B) Model L, described by Eq. 25, where the

information yt is incorporated to the transmitted genotype and where the
growth rate Λ is optimized with respect to the three parameters θ, λ, κ,
which define DðϕjγÞ and Hðγ′jγ,ytÞ by the relations ϕ= θγ + νD and γ′=
λγ + κyt + νH with νD ∼Nð0,σ2DÞ and νH ∼Nð0,σ2HÞ, and fixed σ2D, σ

2
H.

2

Fig. 8. Where to acquire information? Boundary
between Λ̂ðκ= 0Þ> Λ̂ðρ= 0Þ, when acquiring infor-
mation at the phenotypic level is more beneficial,
indicated by “P,” and Λ̂ðκ= 0Þ< Λ̂ðρ= 0Þ, when ac-
quiring information at the genotypic level is more
beneficial, indicated by “L,” for all eight combina-
tions of ðσ2H,σ2D,σ2I Þ∈ f1, 10g3. σ2I represents σ2Ip for
model P and σ2Iℓ for model L.
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can also be analyzed, which do not need to beGaussian for themodel
to be solvable; e.g., adding a linearly varying component to the en-
vironment (as in Fig. 4F) provides a framework for studying the
implications of different modes of adaptations to the survival of
a population facing a directed change of selective pressure (51).
The model is abstracted from material implementations and,

in particular, does not refer to the genetic or nongenetic nature
of what is transmitted. It cannot, therefore, account for the con-
straints and costs that the evolution of any specific mechanism
for generating and transmitting variations must face. The model
can certainly be extended to include such costs, both constitutive
(attached to the mechanisms) or inductive (stemming from their
use), but only at the price of introducing new, ad hoc parameters.
This limitation for example prevents us from making a meaningful
comparison of the relative benefit of “selection” versus “instruc-
tion,” because selection results automatically from the interaction
with the environment, whereas a specific mechanism is needed to
acquire and incorporate environmental signals. More generally,
the model does not account for the fact that a reliable hereditary
mechanism must precede the evolution of a Lamarckian mecha-
nism, if this mechanism is to be faithfully transmitted.

Despite these limitations, we hope that our approach may be
of value for providing theoretical limits to the evolution of
systems of inheritance, in the spirit of the theoretical limits that
Shannon derived for the communication of signals over noisy
channels, after similarly abstracting from practical costs and
constraints (17). As shown in our previous work (23), the sim-
ilarity between the two problems extends beyond the mere
analogy: the fundamental quantities of information theory are
recovered as a limit of our model. We exposed here, in the same
limit, another formal analogy, with the solution to the Kalman
filter used in stochastic control (24). The model presented in
this paper thus provides a versatile, analytically tractable frame-
work for clarifying and unifying common issues and concepts in
population genetics, information theory, and stochastic control,
which may contribute to stimulate further crossbreeding between
these disciplines.
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