
S1 Text. Statistical coupling analysis: supplementary methods and codes

Here, we provide a more complete description of the SCA approach. The pySCA toolbox is available for down-
load through GitHub (https://github.com/reynoldsk/pySCA), and with online instructions at http://reynoldsk.
github.io/pySCA.

A. The multiple sequence alignment

As shown in Figure 1, a multiple sequence alignment of M sequences by L positions can be represented as a
three-dimensional binary array xasi, where xasi = 1 if sequence s has amino acid a at position i, and 0 otherwise;
gaps are ignored and always set to 0. With sequence weights, the amino acid frequencies at individual positions
are fai = 〈xasi〉s ≡

∑
s wsx

a
si/M

′, where M ′ =
∑

s ws represents the effective number of sequences in the alignment.
Similarly, joint frequencies of amino acids between pairs of positions are defined by fabij = 〈xasixbsj〉s ≡

∑
s wsx

a
six

b
sj/M

′.

B. Positional Conservation

The conservation of each position in the alignment is measured by the divergence of the observed frequency fai
of amino acid a at position i from the background probability qa of amino acid a. This background probability is
computed from the mean frequency of amino acid a in all proteins in the NCBI non-redundant database (1):

A C D E F G H I K L M N P Q R S T V W Y
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where the letters refer to the standard one-letter abbreviation for amino acids. Given this, the probability PM [fai ] of
observing the actual frequency fai in an alignment of M ideally sampled sequences is given by the binomial density
function:

PM [fai ] =
M !

(Mfai )!(M(1− fai ))!
(qa)Mfa

i (1− qa)M(1−fa
i ). (1)

When M is large (the relevant limit for the analysis), the Stirling formula leads to the approximation

PM [fai ] ' e−MDa
i , with (2)

Da
i = fai ln

fai
qa

+ (1− fai ) ln
1− fai
1− qa

. (3)

Da
i is the Kullback-Leibler relative entropy (2), indicating how unlikely the observed frequency of amino acid a at

position i would be if a occurred randomly with probability qa - a quantitative measure of position-specific conserva-
tion.

C. Definition of overall positional conservation

As described in the main text, Eq.3 gives the conservation of each amino acid a at each position i. An overall
positional conservation Di taking into account the frequencies of all 20 amino acids can also be defined, but requires
introducing a background probability for gaps; for instance, q̄0 =

∑
i f

0
i /L, the fraction of gaps in the alignment, with

f0i = 1 −
∑20

a=1 f
a
i the fraction of gaps at position i, and q̄a = (1 − q̄0)qa. The probability of jointly observing the

frequencies (f1i , . . . , f
20
i ) of each of the 20 possible amino acids at position i is given by

PM [f1i , · · · , f20i ] =
M !

(Mf0i )! · · · (Mf20i )!
(q̄0)Mf0

i · · · (q̄20)Mf20
i ' e−MDi , (4)

where Di =
∑20

a=0 f
a
i ln (fai /q̄

a) defines the overall conservation at position i.
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D. Positional weights from bootstrap resampling

SCA involves construction of a conservation weighted correlation matrix C̃ab
ij = φai φ

b
j(f

ab
ij − fai f bj ) (Eq.4, main

text), with the weights φ controlling the degree of emphasis on conservation. An approach to define the weights φai
is through a bootstrap resampling procedure on the alignment. The idea is to consider the effect on the conservation
of each position i upon removing each sequence s. This “perturbation” is taken as an estimate of the significance
of each amino acid at each position in the alignment by its impact on the measure of conservation used - here, the
relative entropy Da

i , defined in Eq.3. To develop this formally, let Ma
i be the number of sequences with amino acid

a at position i, and M be the total number of sequences. When sequence s is left out, the frequency fai = Ma
i /M

becomes

fai,s =
Ma

i − xasi
M − 1

=

(
1 +

1

M

)
fai −

xasi
M

+O

(
1

M2

)
, (5)

where we remind that xasi = 1 if sequence s has amino acid a at position i, and 0 otherwise. In the limit of large
number of sequences M , expanding Da

i , viewed as a function of fai,s, to first order in 1/M leads to

Da
i,s ≈ D̂a

i −
xasi
M

∂Da
i

∂fai
, (6)

where D̂a
i is the relative entropy Da

i with fai replaced by (1 + 1/M) fai . Ignoring the scaling factor of 1/M (or,

equivalently, rescaling the perturbation in conservation Da
i,s− D̂a

i by M to be independent of alignment size), we find
that this perturbation approach indicates a weighting function φai for the alignment that is the gradient of relative
entropy:

∂Da
i

∂fai
= ln

[
fai (1− qa)

(1− fai )qa

]
. (7)

The definition of the SCA amino acid correlation matrix (Eq.4, main text) with weights defined here is used in all
versions of SCA from 2.0 to current.

E. Older versions of SCA

The original implementation of SCA (v. 1.0-1.5) defined conservation with different notations and defined co-
evolution through a more specific type of perturbation analysis on the sequence alignment. Here, we describe the
equivalence of the original conservation definition with this work and the conceptual similarity of the definition of
coevolution.

1. Equivalence with previous definitions of conservation

Da
i is equivalent to measures of positional conservation introduced in previous reports of the SCA method. In

essence, Da
i is the asymptotic limit for large M for ∆Gstat,a

i (SCA MATLAB Toolbox v1.0, as reported in Refs. (3–6)),

and ∆Estat,a
i (SCA Toolbox v1.5, as reported in Ref. (7)):

∆Gstat,a
i = ∆Estat,a

i = − 1

M
lnPM [fai ] ' Da

i . (8)

The pre-factor −1/M scales the positional conservation parameter for alignments of different size, and represents the
statistical unit of conservation symbolically indicated by kT ∗ or γ∗ in previous works.

2. The original SCA method

The implementation of the SCA method introduced originally in Ref. (5) was based on a perturbation to the
amino acid distribution at one test site i to measure the difference in position-specific conservation of each amino
acid at a second site j. In general, the perturbation consisted of restricting the test site to the most prevalent amino
acid ai, a manipulation that extracts a sub-alignment with size equal to fai

i M . For test sites in which sub-alignments
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retained sufficient size and diversity to be globally representative of the full alignment (i.e., fai
i M > 100 sequences),

a difference conservation value was calculated:

∆∆Gstat,b,ai

j,i = ∆∆Estat,b,ai

j,i = − 1

M

[
ln
(
PM

[
f bj
])
− ln

(
PM

[
f
b|ai

j|i

])]
, (9)

where f
b|ai

j|i is the frequency of amino acid b in the sub-alignment obtained by retaining only the sequences having a

well represented amino acid ai at position i. ∆∆Gstat,b,ai

j,i represents the change in the conservation of amino acid b

at position j due to the perturbation introduced at position i, a measure of their correlation (the term was renamed
to ∆∆E in subsequent publications and is ignored entirely now to avoid confusion with physical energies). The first
term on the right hand side, − ln

(
PM

[
f bj
])
/M , corresponds to Db

j . A basic tenet of the original SCA approach was
that perturbations lead to sub-alignments that are representative of the full alignment, a condition satisfied typically

by only the most frequent amino acid at a subset of positions. Under this assumption, f
b|ai

j|i ≈ f bj for most amino

acids b at positions j. We may therefore expand the second term, − lnPM

[
f
b|ai

j|i

]
/M , by writing

f
b|ai

j|i =
faib
ij

fai
i

= f
(b)
j +

faib
ij − f

ai
i f bj

fai
i

= f bj +
Caib

ij

fai
i

(10)

with Caib
ij defined as in Eq.4, so that

− 1

M
ln
(
PM

[
f
b|ai

j|i

])
≈ Db

j +
Caib

ij

fai
i

∂Db
j

∂f bj
. (11)

This leads to

∆∆Gstat,b,ai

j,i ≈ − 1

fai
i

∂Db
j

∂f bj
Caib

ij , (12)

which shows that the perturbation procedure also represents a weighted procedure for correlations that is fully
consistent with the general principles presented in the main text.

F. Reduction to positional correlations

C̃ab
ij is a four-dimensional array of L positions × L positions × 20 amino acids × 20 amino acids, but its analysis

shows that it may be compressed into a L × L matrix of positional correlations. To explain, we use an elementary
method from linear algebra for factorizing matrices known as the singular value decomposition (SVD). The SVD for

C̃ab
ij for a given pair of positions (i, j) is:

C̃ab
ij =

20∑
k=1

P ak
ij λ

k
ijQ

kb
ij . (13)

Per this decomposition, each 20 × 20 amino acid coevolution matrix for each (i, j) is written as a product of three
20× 20 matrices: λ, a diagonal matrix of singular values (ranked by magnitude), and P and Q, orthogonal matrices
whose columns contain the associated left and right singular vectors (Fig. xx). Each singular value indicates the

quality of variance in C̃ab
ij captured, and each corresponding left and right singular vector gives the weights for the

combination of amino acids at positions i and j that contribute to this variance. One obvious approach to dimension
reduction of C̃ab

ij is to compute the Frobenius norm of each 20 × 20 amino acid coevolution matrix for each pair of
positions (i, j):

C̃ij =

√√√√ 20∑
k=1

(
λkij
)2
. (14)

This defines the SCA positional coevolution matrix C̃ij (Eq.5 of the main text). However, examination of the singular
values for each (i, j) suggests the sufficiency of an even simpler matrix norm. Specifically, the SVD shows that for
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essentially every (i, j) the first singular value dominates the others, λ1ij � λkij for k 6= 1 (Fig. xx). That is, the
information in the amino acid correlation matrix for each pair of positions can be effectively represented by just the
top singular value (a quantity also known as the spectral norm):

C̃ab
ij ' P a1

ij λ
1
ijQ

1b
ij . (15)

As an example, we show the SVD of the amino acid correlation matrix for two amino acid positions (47 and 59) that
make direct contact in DHFR (Fig. S1B). Consistent with Eq. (15), the amino acid correlation matrix reconstructed
from just the top singular mode shows near perfect agreement with the original matrix (Fig. 1C-D). Thus, a matrix

of positional correlations C̃ij can also be defined simply by taking the spectral norm of C̃ab
ij for each pair (i, j) of

positions:

C̃ij = λ1ij . (16)

The sufficiency of the spectral norm is illustrated by the nearly-perfect agreement of the C̃ij matrix computed using
the spectral norm with that computed by using the Frobenius norm, which retains all the singular values for each
(i, j) (Fig.1E). In the current implementation of the SCA codes (v6.0), we continue to use the Frobenius norm by
default but permit optional return of the spectral norm for further examination of the generality of this result.

G. Spectral decomposition and Independent component analysis (ICA)

As described in the main text, the first step in analyzing the SCA positional coevolution matrix C̃ij is eigenvalue
decomposition, a process that diagonalizes (uncorrelates) the coevolution matrix by linearly combining the amino acid
positions into eigenmodes; the elements of the diagonalized matrix are the eigenvalues which indicate the magnitude of
information in C̃ij captured, and the corresponding eigenvectors give the weights for combining amino acid positions.

To determine the number of significant eigenmodes, we compare the histogram of eigenvalues of the C̃ij matrix
(the eigenvale spectrum) with the average spectrum for many trials (default 10) of randomizing the alignment. In
this randomization procedure, columns of the alignment are scrambled independently; this preserves the first order
constraints on sequence positions while removing all correlations not due just to finite sampling noise. Note that the
randomized eigenspectrum still retains a large first eigenvalue (due to preservation of the first order constraints on
positions). Accordingly, we define the number of significant eigenmodes (k∗) to be those above the average second
eigenvalue plus 2 standard deviations. This cutoff is robust to the number of randomization trials and to the precise
composition of the alignment as long as the number of effective sequences is preserved (Fig. Sxx).

By this definition, the top k∗ eigenvectors Ṽik of C̃ij are uncorrelated but so are any combination of these vectors
obtained by rotating them. Using the eigenvectors to represent patterns of coevolution implicitly includes an additional
constraint - the maximization of variance captured, which is indeed desirable for the purpose of reducing the analysis
of coevolution patterns to just the space spanned top few eigenmodes. However, several other criteria can be used
to specify a rotation of the top k∗ eigenvectors, such as sparsity or independence. Independent component analysis
(ICA (8)) uses this later criterion to define maximally independent components through a numerical optimization
scheme.

Different implementations of ICA use different measures of independence and different algorithms for optimizing
them. Here, we use one of the simplest implementations of ICA, called infomax (9), with modifications introduced in
Ref. (10). We take as input the top k∗ eigenvectors of a correlation matrix, which we concatenate in a k∗ ×L matrix
V . The algorithm iteratively updates an unmixing matrix W , starting from the k∗ × k∗ identity matrix W0 = Ik∗ ,
with increments ∆W given by

∆W = ρ

(
Iktop

+

(
1− 2

1 + exp(−WV )

)
(WV )>

)
W. (17)

The parameter ρ is a learning rate that has to be sufficiently small for the iterations to converge.

The independent components Ṽ p
ik are obtained by applying W to the eigenvectors in Ṽ . To set their overall scale

and sign, we normalize them to unit length (
∑

i(V
p
ik)2 = 1) and orient them so that the position i with largest |V p

ik|
satisfies V p

ik > 0. The order of the independent components, which is not necessarily prescribed in other versions of
ICA, is here well defined by the algorithm and is related to the order of the principal components.
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H. Mapping between sequence and position correlations

In the main text, we present the mapping between sequence and amino acid correlations in the context of an
unweighted full alignment Xsn. Here we describe the necessary steps to apply this approach to the conservation-
weighted dimension-reduced convolution matrix C̃ab

ij . To include sequence weights in the analysis, F (the matrix

of sequence similarities) is redefined as F
′

nm =
∑

s wsXsnXsm/M
′, where M

′
=
∑

s ws is the effective number of

sequences in the alignment. Then, given Λ
′

and V
′
, the eigenvalues and eigenvectors of M

′
F
′
, a mapping to the

sequence space is obtained by

U
′

= XV
′
Λ
′1/2. (18)

Mapping to sequence space the components of the dimension-reduced L× L coevolution matrix C̃ij , defined by

Eq. (16), is not immediate, given that it is not a proper covariance matrix of the form C̃ = X̃>X̃/M ′. However, an

empirical property of the correlations C̃ab
ij provides a simple solution. We showed earlier that the SVD in Eq. (13)

has the property that the information in the 20× 20 amino acid coevolution matrix for each i, j is compressible to a
single scalar value, the top singular value, or spectral norm, see Eq. (16). It also turns out that for any given position
i, the top singular vector P a1

ij corresponding to the top singular value is (up to the sign) essentially invariant over all
positions j (Fig. S4). That is, the amino acids by which a position i makes significant correlations with other positions
j is nearly the same, and therefore can be sufficiently described by just the amino acid distribution at position i taken
independently. Indeed, we can define a L× 20 matrix

P̄ a
i =

φai f
a
i(∑

b(φ
b
if

b
i )2
)1/2 , (19)

whose rows specify the combination of amino acids at each position that contribute to the observed correlations in
C̃ij . Thus, using P̄ a

i , we can reduce the dimensionality of the alignment xasi from a M × L × 20 array to an M × L
matrix xsi:

xsi =
∑
a

P̄ a
i x

a
si. (20)

In xsi, each position i of each sequence s is no longer a 20-dimensional vector, but just a single value representing
the weight of the amino acid at (s, i) as given by the projection matrix P̄ a

i . The dimension-reduced alignment xsi
now provides the mapping between the space of positional coevolution (in the top ICs of the C̃ij matrix) and the

corresponding sequence space. Specifically, if ∆̃ and Ṽ are the eigenvalues and eigenvectors, respectively, of the
positional coevolution matrix C̃ij , then

Ũ = xṼ ∆̃−
1
2 (21)

represents the structure of the sequence space (now with both position and sequence weights) corresponding to the

patterns of positional coevolution in Ṽ . Furthermore, if W is the matrix derived from ICA of Ṽ1...k∗ , Eq.7 of main
text, then

Ũp = WŨ (22)

represents the sequence space corresponding to Ṽ p, the ICs of the C̃ij matrix.

I. Weights φ as redefining the similarity between sequences

The mapping between sequence and position correlations provides an interpretation in terms of sequence
similarity for the weights φ in Eq. (4). Ignoring for simplicity the sequence weights ws, changing the pairwise

frequencies Fnm =
∑

sXsnXsm/M to weighted pairwise frequencies F̃nm = φnφmFnm corresponds to changing Xsn

to X̃sn = φnXsn, and therefore the sequence similarity Srs =
∑

nXsnXsm/L to S̃rs =
∑

n(φn)2XrnXsn/L. This
redefinition of the similarity between sequences gives more importance to the positions that are more conserved. As
a consequence, two sequences differing at conserved sites are considered to be more dissimilar than two sequences
differing at the same number of less conserved sites. To the extent that conservation reflects functional significance,
this defines a metrics between sequences that better reflects functional relationships.
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Reciprocally, if one accepts that the conservation-weighted similarity S̃rs better reflects functional relationships
than Srs, then the mapping between sequence and position correlations indicates that F̃nm (or C̃ab

ij ) should be more

adequate for describing functional correlations between positions than Fnm (or, respectively, Cab
ij ). This justifies the

weights φ in Eq. (4), main text or (Eq. (7) here) from the viewpoint of sequence similarities.
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