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Proteins display generic properties that are challenging to explain by direct selection, notably allostery, the
capacity to be regulated through long-range effects, and evolvability, the capacity to adapt to new selective
pressures. An evolutionary scenario is proposed where proteins acquire these two features indirectly as a
by-product of their selection for a more fundamental property, exquisite discrimination, the capacity to bind
discriminatively very similar ligands. Achieving this task is shown to typically require proteins to undergo a
conformational change. We argue that physical and evolutionary constraints impel this change to be controlled
by a group of sites extending from the binding site. Proteins can thus acquire a latent potential for allosteric
regulation and evolutionary adaptation because of long-range effects that initially arise as evolutionary spandrels.
This scenario accounts for the groups of conserved and coevolving residues observed in multiple sequence
alignments. However, we propose that most pairs of coevolving and contacting residues inferred from such
alignments have a different origin, related to thermal stability. A physical model is presented that illustrates this
evolutionary scenario and its implications. The scenario can be implemented in experiments of protein evolution
to directly test its predictions.
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Proteins combine a capacity to perform exquisite tasks
such as specific binding and catalysis with a capacity to adapt,
both on physiological time scales through allostery and on
evolutionary time scales through mutations. What principles
underly this duality? How does it originate in the course of
evolution? For proteins folding into a stable structure, a few
generic properties constrain the explanations that we may pro-
vide. One is the ubiquity of long-range effects experimentally
observed in all studied proteins: perturbations at a distance
from the active site, whether in the form of mutations or in the
form of binding to another molecule, can affect significantly
protein function [1–3]. Another is the coexistence of two types
of patterns of coevolution revealed by statistical analyses
of alignments of protein sequences: structurally connected
groups of conserved and coevolving residues called sectors
[4,5], and structurally contacting pairs of residues distributed
across the structure [6]. Finally, another feature reported to be
essential to protein machineries is their capacity to undergo
conformational changes [7].

Here, we propose that a key to understand the link between
high performance and adaptability in proteins is the physical
and evolutionary implications of one of their most funda-
mental requirements: discriminative binding. Discriminative
binding, the capacity to bind to a particular ligand but not
to other similar ones, is central to the function of many if
not most proteins, from signaling proteins that respond to
particular inputs and avoid cross-talk [8] to enzymes that bind
to the transition state of a reaction but release its product [7],
transcription factors that recognize specific promoters among
a profusion of similar motifs [9], or antibodies that are highly
specific to particular antigens [10].

As binding takes place at a particular location on a protein
surface, it is not a priori expected to be sensitive to distant

perturbations, whether in the form of mutations or in the form
of interactions with other molecules. But achieving exquisite
discrimination imposes particular constraints. Physically, we
shall show how it typically involves a conformation change, or
even a switch between two states that preexist any interaction
with a ligand. Evolutionarily, few sequences can achieve dis-
crimination which is shown to require a finely tuned binding
site. This tuning is generally difficult to accomplish based
only on the few amino acids directly interacting with the
ligand. Additional tuning knobs are effectively provided by
sites coupled to the binding site. Since few residues interact
directly with it, this generally implies recruiting distant sites.
In this scenario, binding specificity is thus controlled through
a conformational change by a group of sites extending beyond
the binding site. This sensitivity of a functional phenotype
to multiple and possibly distant sites endows proteins with a
latent capacity to evolve allosteric regulation and adapt to new
selective pressures. When integrating an additional constraint,
thermal stability, we shall show that it also accounts for the
different patterns of intraprotein coevolution that multiple
sequence alignments of natural proteins report.

We demonstrate this evolutionary scenario by means of
simple physical models. These models are not meant to de-
scribe any particular protein but to capture the main con-
straints relevant to a discussion of long-range effects within
stable protein folds: the fact that physical interactions are
short range. We analyze a variety of such physical models to
ensure that our conclusions do not depend on the nature of the
interactions: in all cases, we find that the physical implication
of exquisite discrimination is a finely tuned conformational
switch between the ligand-free and the ligand-bound states.
To examine the additional implications of evolutionary con-
straints, we then focus on one of the simplest models, a
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spin model where each site can be in just two states. This
model can for instance be interpreted as describing side-chain
fluctuations between a few discrete rotameric states in the
context of a rigid backbone, one of the basic mechanisms
by which long-range effects arise in proteins [11]. We show
that the evolutionary constraints cause with high probability a
large part of the system to be involved in the discrimination.
Sensitivity to perturbations distant from the active site thus
arises as a by-product of a selection for discrimination, i.e.,
as an evolutionary spandrel [12]. This side effect is shown to
favor adaptation to new selective pressures when considering
perturbations caused by mutations, and to enable the evolution
of allostery when considering perturbations caused by interac-
tions with other molecules. It is also shown to cause a generic
coevolution pattern found in protein sequences, the extended
groups of conserved and coevolving amino acids called sec-
tors [5]. Another coevolution pattern is also generically found
in protein sequences, which consists in isolated pairs of con-
tacting amino acids distributed across the structure [6]. This
pattern is shown to be captured by the model when introducing
a constraint on thermal stability. The model thus provides
an explanation for conformational switches, the origin of al-
lostery, evolvability, and the different patterns of coevolution
observed in multiple sequence alignments as a consequence
of only two selective constraints: discriminative binding and
thermal stability. While it does not exclude other evolutionary
scenarios that may lead to the same or different physical
effects, it describes an interplay between evolutionary and
physical constraints that is consistent with observations in
many proteins and directly testable in experiments of protein
evolution.

I. FROM DISCRIMINATIVE BINDING TO
CONFORMATIONAL CHANGES

Formally, protein evolution involves three types of vari-
ables: (i) physical degrees of freedom x describing the confor-
mation of the molecule, (ii) evolutionary degrees of freedom
a defined by the protein sequence, and (iii) environmental
degrees of freedom ℓ defined by the surrounding medium,
here restricted to either the solvent or a ligand interacting
at a particular binding site. These three variables are linked
in a potential U (x, a, ℓ) that dictates through Boltzmann’s
law how the different physical conformations are sampled
at thermal equilibrium: the probability of conformation x is
P(x|a, ℓ) = exp{−β[U (x, a, ℓ) − F (a, ℓ)]}, where F (a, ℓ) =
−β−1 ln

∫
dx exp[−βU (x, a, ℓ)] represents the free energy of

the system and β represents the inverse temperature.
A problem of discrimination arises when two ligands ℓr

and ℓw can potentially be substituted for the solvent ℓ0 at the
binding site, but only ℓr is desirable. Finding a sequence a that
solves this problem generally involves minimizing #Fr (a) =
F (a, ℓr ) − F (a, ℓ0), the binding free energy to the right lig-
and ℓr , while maximizing #Fw(a) = F (a, ℓw ) − F (a, ℓ0), the
binding free energy to the wrong ligand ℓw. When ℓr and ℓw

are similar, this may lead to a tradeoff. A precise formulation
of this tradeoff depends on the concentrations of the two
ligands as well as on the relative cost and benefit that binding
to them entails. Here, we consider a strong form of discrim-
ination and impose F (a, ℓr ) < F (a, ℓ0) < F (a, ℓw ). Under

these conditions, binding with ℓr is favorable, #Fr (a) < 0,
but binding with ℓw is unfavorable, #Fw(a) > 0. Different
formulations of the same tradeoff can also lead to the same
conclusions (Appendix A).

Satisfying F (a, ℓr ) < F (a, ℓ0) < F (a, ℓw ) when ℓr and ℓw

are much more similar to each other than they are to ℓ0 is
generally either impossible or possible only for a restricted
set of sequences a. This is best illustrated with a few ele-
mentary models. Consider first elastic networks, a mechanical
framework commonly used as a coarse-grained description of
proteins [13]. The simplest conceivable elastic network is a
single mass attached to a fixed point by a spring. We assume
here that it is additionally subject to a constant force h = ℓ −
a controlled by the evolutionary and environmental degrees
of freedom a and ℓ [Fig. 1(a)]. The potential is therefore
U (x, a, ℓ) = k(|x| − r)2/2 − (ℓ − a)x where x is the position
of the mass along a dimension to which it is confined, k is
the stiffness of the spring, and r is its equilibrium length.
In this model, ℓ and a may take arbitrary real values. When
ℓ0 < ℓw < ℓr , it is readily shown that satisfying F (a, ℓr ) <
F (a, ℓ0) < F (a, ℓw ) requires a to satisfy (ℓ0 + ℓw )/2 < a <
(ℓ0 + ℓr )/2 [Fig. 1(a) and Appendix B 1). This corresponds
to the mean conformation ⟨x⟩a,ℓ =

∫
dxP(x|a, ℓ)x switching

from a negative to a positive value when the solvent ℓ0 is
replaced by the ligand ℓr . Importantly, this conformational
switch is required only when ℓw and ℓr are sufficiently similar:
if ℓw < ℓ0 < ℓr , the solutions do not involve a change of sign
(Appendix B).

In this first model, achieving exquisite discrimination in-
volves a switch between two states that are local minima
of the potential U (x, a, ℓ0) [Fig. 1(a)]. This, however, need
not be the case as seen by considering a harmonic potential
U (x, a, ℓ) = k(x − r)2/2 − (ℓ − a)x, which also requires a to
verify (ℓ0 + ℓw )/2 < a < (ℓ0 + ℓr )/2 but it cannot sustain
multiple states (Appendix B 3). In this model, a conforma-
tional change nevertheless occurs upon binding with ampli-
tude #x = |ℓr − ℓ0|/k. A model with the same phenomenol-
ogy can also be constructed from two springs [Fig. 1(b)].
Varying one parameter in this model, we can continu-
ously interpolate between a one-state and a two-state model
(Appendix B 2).

Exquisite discrimination can in principle be achieved with-
out a conformational change, by a rigid lock-and-key mech-
anism, but fine-tuning the evolutionary parameters is in any
case necessary (see the shape space model in Appendix B 4).
A conformational change is, however, expected as soon as
a minimal form of flexibility is present. A limiting case
is a spin model where x takes only two values, x = ± 1.
With U (x, a, ℓ) = (a − ℓ)x, the discrimination problem takes
again the same form: when ℓ0 < ℓw < ℓr, a must be tuned
to satisfy (ℓ0 + ℓw )/2 < a < (ℓ0 + ℓr )/2 for the condition
F (a, ℓr ) < F (a, ℓ0) < F (a, ℓw ) to be fulfilled, in which case
binding induces a conformational switch from ⟨x⟩a,ℓ0 < 0 to
⟨x⟩a,ℓr > 0 [Fig. 1(c) and Appendix B 5]. Graphically, the
conformational change is again linked to the need for ℓ0 and
ℓr to be associated with different “branches” of the free energy
[h < 0 and h > 0 for F (h = a − ℓ) in Fig. 1].

In summary, achieving exquisite discrimination requires a
flexible system to be evolutionarily tuned and to physically
change conformation upon binding. In proteins, however,
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FIG. 1. Elementary models illustrating how exquisite discrimination implies evolutionary fine-tuning and a conformational change.
(a) Model consisting of a single particle attached to a fixed point by a spring and subject to a constant force h. The potential is U (x, h) =
k(|x| − r)2/2 − hx and the free energy F (h) is shown as a function of h for r = 1, k = 2, β = ∞. The state x̂(h) of the system here is
simply the minimum of U (x, h). The constant force h is jointly controlled by the evolutionary and environmental degrees of freedom a
and ℓ through h = ℓ − a. To achieve exquisite discrimination in the form F (a, ℓr ) < F (a, ℓ0 ) < F (a, ℓw ) the variable a must be chosen so
that F (h0 = ℓ0 − a) lies in between F (hw = ℓw − a) and F (hr = ℓr − a). When ℓ0 < ℓw < ℓr , this requires 0 ! hw < −h0 < hr . In this case,
binding induces a conformational switch from x̂(h0 ) < 0 to x̂(hr ) > 0. (b) Model with two springs under similar evolutionary constraints. Here,
the conformational change is not a switch between two states of U (x, h0 ), although it is for other values of the parameters (Appendix B 2).
(c) Spin model where U (x, h) = −hx, exhibiting the same phenomenology in a minimal setting where x takes only two values ± 1.

the evolutionary degrees of freedom are not controlled by
continuous variables but by a limited set of 20 amino acids. At
the binding site, relatively few values of a are thus available
to tune F (a, ℓ). As shown below, a generic solution is to
enlarge the evolutionary space by coupling the binding site to
other sites. Interestingly, having multiple tuning knobs favors
adaptation not only to a particular selective constraint but
also to alternative constraints. Also, if distant sites are thus
involved, they are likely to be allosteric: a perturbation at
those sites, such as an interaction with another molecule, will
alter the binding properties. These implications of evolution-
ary and physical constraints are independent of the underlying
mechanisms and may be demonstrated for a wide class of
potentials [14]. We therefore illustrate them using a physical
model with the simplest form of flexibility, a spin model.

II. TWO-DIMENSIONAL SPIN MODEL

For a simple model with a nontrivial geometry, we con-
sider a spin model defined on a two-dimensional lattice with
periodic boundary conditions along one dimension [Fig. 2(a)].
This model is similar to the model introduced in Ref. [15]
with two differences. First, for simplicity, we consider binary
variables (spins) rather than continuous variables. Second and
most importantly, the evolutionary scenario that we consider
is totally different: instead of selecting explicitly for a long-
range effect by varying the boundary conditions at the two
extreme sides of the lattice, we select for binding specificity

by varying the boundary conditions at a single site of the
lattice. The point is indeed to show that long-range effects
can evolve spontaneously with significant probability from
a selection for exquisite discrimination, even though this
selection is very localized.

Each node i is associated with two variables, a physi-
cal variable xi that can take two values xi = ± 1, and an

(a) (b)

L + 1

W
ai

aj

hj(aj)

hi(ai)

Jij(ai, aj)

xi

xj

FIG. 2. Two-dimensional spin model. (a) Lattice on which the
model is defined. Each node i carries a physical variable xi ∈
{−1, +1} and an evolutionary variable ai ∈ {1, . . . , q}. One node at a
boundary, here in red, defines the binding site, which may be subject
to an external field ℓ representing a ligand. The thinner lines from top
to bottom nodes implement the periodic boundary conditions, giving
to the structure the geometry of a cylinder. Here and in the following
figures, L = 10 and W = 5. (b) The evolutionary variables ai and
aj define fields hi(ai ) and hj (aj ) and couplings Ji j (ai, aj ) to which
all physical variables xi and x j connected by a link in the lattice are
subject. The potential U (x, a, ℓ) is given by Eq. (1).
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evolutionary variable ai that can take q values ai = 1, . . . , q.
The evolutionary variables determine the fields hi(ai ) and
couplings Ji j (ai, a j ) to which the physical variables are sub-
ject [Fig. 2(b)]. Finally, a site bis chosen to represent the
binding site, which is subject to an additional external field
ℓ representing an interaction with a ligand or with the solvent
[red node in Fig. 2(a)]. The potential is

U (x, a, ℓ) = −
∑

⟨i, j⟩
Ji j (ai, a j )xix j −

∑

i

hi(ai )xi − ℓxb (1)

where x ∈ {−1,+1}N , a ∈ {1, . . . , q}N , and ℓ ∈ R, N being
the total number of sites. The couplings Ji j (ai, a j ) are pos-
sibly nonzero only between nearest neighbors in the two-
dimensional lattice shown in Fig. 2(a), so as to reflect the
short-range nature of physical interactions. The free energy
given a sequence a and a ligand ℓ is as usual F (a, ℓ) =
−β−1 ln

∑
x exp[−βU (x, a, ℓ)] with β the inverse tempera-

ture.
For a score of the extent to which a sequence a dis-

criminates the right ligand ℓr from the wrong ligand ℓw, we
consider

φ(a) = min(−#Fr (a),#Fw(a)), (2)

where #Fr (a) = F (a, ℓr ) − F (a, ℓ0) and #Fw(a) =
F (a, ℓw ) − F (a, ℓ0) are the binding free energies
to the two possible ligands. With this formulation,
F (a, ℓr ) < F (a, ℓ0) < F (a, ℓw ) is equivalent to φ(a) > 0.
Other fitness functions implementing the same tradeoff
between #Fr (a) and #Fw(a) may also be used and lead to
similar conclusions (Appendix A). We sample sequences
a with probability P(a) ∝ eγφ(a) using a Metropolis Monte
Carlo algorithm [16], which corresponds to an evolutionary
dynamics in the origin-fixation limit, with φ(a) interpreted as
a fitness function and γ interpreted as an effective population
size [17].

For illustration, we consider a cylinder with L = 10 layers
of couplings and W = 5 nodes per layer [Fig. 1(a)] for a
total of N = W (L + 1) = 55 sites, in the range of smallest
folding protein domains. With this geometry, the free en-
ergy F (a, ℓ) and other thermodynamical quantities can be
computed exactly by transfer matrices [18]. We take q = 5,
smaller than the number of natural amino acids but suffi-
cient to generate a large evolutionary space of size qN ≃
1038. To define hi(ai ) and Ji j (ai, a j ), we draw their values
at random from normal distributions, hi(ai ) ∼ N (0, σ 2

h ) and
Ji j (ai, a j ) ∼ N (0, σ 2

J ), independently for each i, j and each
ai, a j . Fixing the energy scale by setting β = 1, we take
σh = σJ = 3 so that some fields and couplings may be large
relative to β−1, as in natural proteins where the strength of
some physical interactions, e.g., covalent bounds and steric
constraints, can significantly exceed the scale of thermal
fluctuations. We take ℓ0 = 0, ℓw = 2, and ℓr = 3, a choice
of parameters for which φ(a) > 0 is achievable with a single
spin, provided the adequate evolutionary diversity is available.
Lastly, we take γ = 100 to sample near-optimal values of
φ(a).

With these parameters, most evolutionary trajectories lead
to φ(a) > 0 after 1000 iterations [>98%, see inset of
Fig. 3(a)]. To visualize and quantify conformational changes
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FIG. 3. Extent of the conformational change and evolvability for
different realizations of the two-dimensional spin model. (a) Distri-
bution of ω̄r , the effective fraction of sites changing conformation
upon binding, over 1000 different evolved systems a. Only the fittest
systems with φ > 0.35 are considered. As the distribution of φ is
picked around its theoretical maximum φ ≃ 0.41, these top systems
represent >94% of the total. For these systems, ω̄r is nearly indepen-
dent of φ (Appendix C 2). Inset: Cumulative distribution of φ over all
1000 systems. The red dotted line indicates the theoretical maximum.
(b) For the same systems, the measure of evolvability ε is positively
correlated with ω̄r , although independent of φ (Appendix C 2): the
more extended the conformational switch, the wider the range of
phenotypes available in the neighborhood of a sequence, irrespective
of its fitness.

induced by substituting ℓr for ℓ0, we introduce

ωi,r (a) = 1
2

∣∣⟨xi⟩a,ℓr − ⟨xi⟩a,ℓ0

∣∣, ω̄r (a) = 1
N

N∑

i=1

ωi,r (a)

(3)
where ⟨xi⟩a,ℓ =

∫
dxP(x|a, ℓ)xi stands for the mean value of

xi given a, ℓ. ωi,r (a) quantifies the extent to which site i
undergoes a conformational change upon binding to the right
ligand: ωi,r (a) = 0 indicates no change, while ωi,r (a) = 1
indicates a maximal change between two polarized states.
The site-averaged quantity ω̄r (a) may be interpreted as an
effective fraction of sites taking part in the switch [ω̄w(a) is
similarly defined by considering ℓw instead of ℓr]. As shown
in Fig. 3(a), ω̄r (a) varies widely from one evolved system
to the next, even among systems with nearly identical fitness
value φ(a). In most but not all cases, the set of sites involved
in the switch extends beyond the binding site. The size and
shape of this extension varies again from case to case (Fig. 4).
As in the simpler models, a switch evolves only under a con-
straint for exquisite discrimination controlled by the similarity
between the two ligands ℓr and ℓw: if ℓw < ℓ0 < ℓr no switch
evolves while if ℓ0 < ℓw < ℓr or ℓ0 < ℓr < ℓw it always does
(Appendix C 2).

Consistent with the proposed scenario, sites involved in the
switch, and only those sites, are sensitive to perturbations.
This is verified by applying to the evolved systems an ad-
ditional local field h′

i = ± 2 at each site i and estimating the
effect #hiφ of this perturbation on the fitness φ(a): as seen in
Fig. 4, the sites responding to this local perturbation are the
same as those participating in the conformational change. An
overlap with sites sensitive to mutations (#aiφ) is also evident
although less straightforward because a mutation at i affects
the couplings Ji j (ai, a j ) to neighboring sites in addition to the
local field hi(ai ). In any case, a selective pressure for exquisite
discrimination is sufficient in this model to generate with high
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FIG. 4. Five evolved systems with equivalent fitness φ ≃ 0.4 but switches of different extensions ω̄r , as indicated on the top. (a) Confor-
mational change ωi,r at each position i when ℓr is substituted for ℓ0. (b) Maximal fitness cost #hi φ when adding an external field h′

i = ± 2.
(c) Average fitness cost #ai φ of mutating ai. In each case, the size of the dots is proportional to the quantity of interest. The first two rows
are nearly identical, indicating that the same sites that change conformation are allosteric. The relation to sites displaying a strong mutational
effect (last row) is also apparent although less straightforward due to the impact of mutations on both hi(ai ) and Ji j (ai, aj ). These examples
illustrate how long range effects may arise from local selection for exquisite discrimination [the binding site is always the middle node on the
left edge as in Fig. 2(a)].

probability distant allosteric sites and long-range mutational
effects.

To assess the implications for adaptation, we define a mea-
sure of evolvability ε(a) that reports the phenotypic diversity
of sequences differing from a by a single mutation. Here, the
relevant phenotype is the set of ligands that a sequence can
discriminate. In the limit where ℓr and ℓw are very similar,
|ℓr − ℓw| → 0, there is typically either no or a single value of
ℓr for which φ(a) > 0. This value ℓr (a) provides a synthetic
characterization of the phenotype of a. A measure ε(a) of the
phenotypic diversity of the neighborhood of a can thus be
defined from the number of different values that ℓr (a′) takes
when considering all the single mutants a′ of a. In practice, we
fix an interval of phenotypes of interest [ℓmin, ℓmax] = [−1, 4],
partition it into small subintervals of length δ = 0.1, and for
each single mutant a′ of a given sequence a find, if it exists,
the interval to which ℓr (a′) belongs: ε(a) is then defined as
the fraction of subintervals covered by the (q − 1)W (L + 1)
single-point mutants of a. As seen in Fig. 3(b), ε(a) correlates
with ω̄r (a), consistent with the proposition that an extended
conformational switch favors adaptation to new selective pres-
sures; this correlation does not depend on the choice of δ
to resolve different phenotypes (Appendix C 2). Importantly,
while ε(a) is defined from the effect of single-point mutations
only, it correlates with the capacity of a system to adapt
to a change of selective pressure over multiple generations
(Appendix C 2).

In summary, the two-dimensional spin model illustrates
how selection for exquisite discrimination gives rise to a
conformation switch, how this switch may involve a varying
number of sites, and how the potential for allostery and
evolvability increases with the number of coupled sites that
control the switch.

III. CONSERVATION, COEVOLUTION, AND THERMAL
STABILITY

A relevant model of protein evolution should reproduce the
salient statistical patterns present in multiple sequence align-
ments of natural protein families. Those families comprise
sequences that evolved from a common ancestral sequence
under presumably similar selective pressures. The simplest
way to produce comparable alignments from the model is to
take an evolved sequence as the ancestral sequence, generate
from it M independent trajectories, and collect the sequences
at the end points into an alignment. Although this procedure
assumes a trivial starlike phylogeny and strictly constant
selection, we find it sufficient to produce statistical features
comparable to those in natural alignments.

Given an alignment, a degree of evolutionary conservation
can be defined at each site i by the relative entropy

Di =
q∑

ai=1

fi(ai ) ln
fi(ai )
q−1

, (4)

where fi(ai ) is the frequency at which amino acid a is present
at position i in the alignment. The pattern of evolutionary
conservation Di essentially reproduces the patterns of con-
formational changes ωi,r and allosteric effects #hiφ in the
ancestral sequence [Fig. 5(a), to be compared with the second
column of Fig. 4, which characterizes the ancestral sequence
from which the alignment is generated].

Beyond conservation at individual positions, we can also
analyze coevolution between sites through the correlation ma-
trix Ci j (ai, a j ) = fi j (ai, a j ) − fi(ai ) f j (a j ) where fi j (ai, a j ) is
the joint frequency of (ai, a j ) at sites i and j. Different statis-
tical patterns can be extracted from Ci j (ai, a j ) [19,20]. The
statistical coupling analysis (SCA) thus extracts conserved
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FIG. 5. Conservation and coevolution in multiple sequence
alignments. Three alignments of 1000 sequences were generated
from the same ancestral sequence, corresponding to the second
column of Fig. 4, but under different selective pressures: (a) exquisite
discrimination alone, (b) stability alone, and (c) the two selections
jointly. The first row indicates how the measure of evolutionary
conservation Di defined in Eq. (4) varies from site to site. The second
row indicates the mean value of the SCA correlation matrix ⟨C̃i j⟩ j

for each site i, a quantity that combines conservation and coevolution
[21]. The third row displays the performance of contact prediction by
plmDCA [23]: pairs of sites are ranked from most to least coevolving
and for the top r pairs the fraction in contact in the cylindrical
structure is reported as a function of r, with contact defined either as
distance d = 1 (in blue), d = 2 (orange), or d = 3 (green). Selection
for discrimination produces a set of evolutionary conserved and
correlated sites that correspond to sites showing a strong mutational
effect in the ancestral sequence (second column, third row of Fig. 4),
but only few coevolving contacts. Selection for stability produces
a different pattern, without strongly conserved sites but with many
coevolving contacts. Finally, joint selection for discrimination and
stability generates both a set of conserved sites and many coevolving
contacts.

global modes [21] while the direct coupling analysis (DCA)
extracts pairs of strongly coupled sites [6]. Applied to natural
sequence alignments, SCA identifies groups of evolutionary
conserved and coevolving sites called sectors, which are found
to be structurally connected and associated with core func-
tions of proteins [21]. DCA, on the other hand, infers a ranked
list of coevolving pairs, the top ones of which are found to
be in contact in the three-dimensional structure [6]. Applying
SCA to alignments generated from the model, we recover as a
sector essentially the same set of sites that participate in the
conformational switch and are identified from evolutionary
conservation (Fig. 5), comparable to what is obtained with
natural alignments of proteins with a single sector. SCA
combines conservation and correlations and here the sector
is mostly controlled by conservation. In alignments of natural
proteins, sequences of different specificities are often present
which enhance the correlations. Applying DCA yields top
coevolving pairs that are in structural contact [Fig. 5(b)]; their
number, however, is small compared to what is obtained from
natural alignments of similar size and diversity.

One addition to the model is sufficient to correct for this
discrepancy: a selective constraint on thermal stability. Our

model indeed assumes that all sequences are folded into the
same cylindrical shape without considering the possibility for
some mutations to destabilize this structure. A simple way to
integrate this possibility without explicitly modeling folding
is to impose a maximal value F ∗ for the free energy F (a, ℓ0):
above this value, the system is considered unfolded. To ac-
count for the fact that natural proteins are only marginally
stable [22], we choose F ∗ well below the typical values of
F (a, ℓ0) in absence of stability constraint but well above what
may be obtained by minimizing F (a, ℓ0) (Appendix C 1).
As shown in Fig. 5(b), the constraint F (a, ℓ0) ! F ∗ alone is
sufficient to generate a large number of coevolving contacts,
irrespective of the exact value of F ∗ (Appendix C 3). Imposing
jointly the two selective pressures, exquisite discrimination
and thermal stability, reproduces both features of natural
alignments, a localized and evolutionarily conserved sector
controlling binding affinity and specificity, and a large number
of coevolving and contacting pairs of sites distributed across
the structure [Fig. 5(c) and Appendix C 4].

IV. DISCUSSION

Proteins derive their many functions from a few key prop-
erties, among which are the capacity to stably fold into three-
dimensional structures (stability), to selectively bind distinct
ligands and substrates (specificity), to be regulated through
long-range effects (allostery), and to adapt to changing selec-
tive pressures (evolvability). These different properties have
been characterized in a number of instances but understanding
how they are encoded into amino acid sequences remains a
challenge. One puzzling feature is the ubiquity of long-range
effects: mutational and evolutionary studies concur to indicate
that binding and catalysis are affected by substitutions of
amino acids more than 10 Å from the active site [1]. Another
puzzling feature is the coexistence of two types of coevo-
lution patterns in multiple sequence alignments: structurally
connected groups of coevolving amino acids called sectors
[4,5] as well as a variety of more isolated pairs of coevolving
amino acids in contact in the three-dimensional structure [6].
Beyond case-by-case descriptions and statistical modeling,
what explains the mutational and evolutionary patterns that
we observe in protein sequences? To what extent are the
different key properties of proteins independent of each other?
Without necessarily seeking to retrace natural history, what
parsimonious evolutionary scenarios may generate compara-
ble sequences and phenotypes?

Here, we proposed and analyzed such a scenario, which
is based on one primary selective pressure, the requirement
to achieve fine molecular recognition. First, we showed in a
variety of different physical contexts how discriminative bind-
ing requires a finely tuned conformational switch. Second, we
argued that fine tuning may involve an extended subpart of
the system to benefit from an enlarged evolutionary space.
We then showed that extended sectors indeed emerge in a
physical model with short-range interactions where selection
operates only locally. Third, we showed that the sensitivity
of this sector to perturbations implies a potential to evolve
allosteric regulation and to adapt to new selective pressures.
The model explains both the conformation changes observed
in protein structures and the coevolving sectors observed in
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protein sequences. In this scenario, adaptability is not opposed
to high performance but comes as its natural consequence.
The arguments are partly independent of the physical nature of
the system, which only needs to be a structured network with
short-range interactions subject to evolution. We therefore
chose to illustrate the scenario with one of the simplest physi-
cal models, a spin model. Finally, we showed how the second
type of coevolution patterns, distributed pairs of coevolving
contacts, can be explained within the same framework by
taking into account an additional selective pressure, thermal
stability. Our evolutionary scenario is parsimonious in the
sense that only two selective pressures, discriminative binding
and thermal stability, are invoked, with long-range effects
arising as a by-product.

This is in sharp contrast with several physical models
recently proposed for the evolution of allostery, which are
based on a direct selection for long-range regulation [15,
24–27]. A general evolutionary argument and specific ex-
periments, however, argue strongly against a direct selection
for long-range effects in the initial steps of the evolution
of allosteric regulation. From an evolutionary perspective,
the emergence of allostery by direct selection for regulation
is indeed considered implausible in the biological literature
as it assumes the concerted evolution of two proteins, one
becoming regulated and the other one regulating it [28]. As
for the evolution of other complex systems, the conundrum
disappears if considering the preexistence of components and
properties that evolved under unrelated selective pressures.
The evolution of allosteric regulation is, instead, easily ex-
plained if long-range effects preexist any direct selective
pressure to evolve them. The proposal that proteins have an
inherent propensity for allostery has been made previously
[29] and is strongly supported by a number of experimental
results, starting with the repeated discovery of serendipitous
allosteric sites with nonphysiological effectors [30,31]. Latent
allostery is also demonstrated by the successful engineering
of allosteric regulation at several surface sites of a protein
[32–34]; these sites were not known as regulatory targets
but, consistent with our model, they are evolutionarily linked
through a sector to the active site. These works, and more
generally the ubiquity of long-range effects in proteins [1–4],
unequivocally reveal the prevalence of latent allostery. Finally,
compelling evidence for preexisting long-range effects as pre-
cursors of allosteric regulation is provided by an experimental
study of mitogen-activated protein (MAP) kinases [35]: an
effector A allosterically regulating a kinase K in one species
of yeast was shown to regulate evolutionary related kinases
K ′ in other species where no such regulation or analog to
A had evolved, in line with a scenario where that A had an
allosteric effect on the common ancestor of K and K ′ prior
to any selection for allosteric regulation. While convincingly
indicating latent allostery as an origin of allosteric regulation,
these past studies do not explain, however, how latent allostery
arises in the first place.

Our evolutionary scenario also contrasts with other ex-
planations for the origin of evolvability. In some previous
models, flexibility is linked to evolvability, but evolution
under constant selective pressure leads to a phenomenon
of canalization where flexibility and evolvability both be-
come increasingly limited [36]. This is resolved in other

models by considering an evolutionary history of temporally
varying selecting pressures where, for instance, the nature
of the ligand changes in the course of evolution [15,37,38].
While such fluctuations are likely to be relevant to protein
evolution, our model shows that they are not necessary to
generate evolvable proteins. The two factors, selection for
exquisite discrimination and fluctuating selective pressures,
are however nonexclusive and may reinforce each other. In
our model, a fluctuating selection may thus contribute to select
for systems with more extended conformational switches. The
two factors may in fact reflect the same principle: the presence
of related but partly conflicting constraints. The relationship
between these constraints may be more critical than their
simultaneous or successive occurrence.

The contribution of conformational changes to molecular
recognition has also been explained by a different mechanism
called conformational proofreading [39]. In this model, a
structural mismatch between the protein and its substrates
favors correct recognition by penalizing binding to the wrong
ligand more than it does to the right ligand. Here, we con-
sidered a stronger notion of molecular recognition called
exquisite discrimination where binding to the wrong ligand is
less favorable than binding to the solvent in addition to being
less favorable than binding to the right ligand. We showed
exquisite discrimination to be achievable through a particular
type of conformational change, which can take the form of a
switch between two local minima of the potential [Fig. 1(a)].
While conformational proofreading is particularly relevant to
proteins involved in search processes [40], exquisite discrim-
ination may be more relevant to enzymes, which have to bind
to a reactant but release its product. Despite differences, the
two mechanisms imply a similar notion of fine-tuning, which
we propose here to be a sufficient factor for evolving an
extended set of coupled sites.

By examining the implications of discriminative recogni-
tion, our model complements the many studies focused on the
folding and thermal stability of proteins. This includes mod-
els that analyzed the interplay between binding affinity and
thermal stability [41–43]. Our model illustrates a simple di-
chotomy. On one hand, selection for exquisite discrimination
leads to a conserved set of coevolving positions structurally
connected to the binding site, analogous to the sectors inferred
from multiple sequence alignment of natural proteins [21].
On the other hand, constraints on thermal stability lead to a
large number of contacting coevolving sites distributed across
the structure, analogous again to what is found in natural
proteins [6]. Consistent with this scenario, the method that
best infers structural contacts from coevolution (DCA) is also
very effective at scoring sequences for their thermal stability
[44,45]. Our model treats unfolded conformations implicitly
but the generation of coevolving contacts from selection
for thermal stability was previously demonstrated in lattice
protein models where unfolded conformations are explicitly
considered [46]. At the origin of the two distinct statistical
signatures are two essential differences between binding and
stability constraints. Physically, binding involves a localized
interaction while stability is a structurally distributed property.
Evolutionarily, selective pressures on stability are typically
less stringent than selective pressures on binding, as reflected
by the marginal stability of most globular proteins [22] and
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the scarcity of mutations improving binding in wild-type
proteins [47]. As a result, the stability problem has high
entropy in sequence space, with different solutions involving
different isolated interactions, while the binding problem has
low entropy, with solutions all involving essentially the same
clustered interactions.

Partial or global unfolding induced by perturbations at sites
contributing to thermal stability, which may be located arbi-
trarily far from the active site, is in fact another mechanism
by which protein activity may respond to distant perturba-
tions without any explicit selection for allosteric regulation.
Allosteric switches based on partial or global unfolding are
indeed documented in several proteins [48] and can provide
a mechanism for adaptation [49]. For such mechanism, no
evolutionarily conserved pathway linking the allosteric site to
the active site is necessary.

Thermal fluctuations around a folded state also provide a
way by which perturbations may propagate through long dis-
tances, possibly without major conformational change [50].
This mechanism is evidenced in some proteins [51] and is
explained by elastic inhomogeneities [52]. As these inhomo-
geneities are generic features of proteins, their presence may
also precede any selection for allosteric regulation. Following
our approach, it would be interesting to study this other
scenario, taking into account the demonstrated relation to
coevolving contacts [53]. This scenario may depend on the
nature of the physical interactions since, at least in some
proteins, fluctuation-based allostery operates through elastic
motions [53]. Spin models, where only a few discrete states
are accessible at each site, may instead be more suited to a
description of side-chain fluctuations between a few rotameric
states attached to a fixed backbone, which dominate fluctua-
tions in some other proteins [11]. Going beyond the generic
effects analyzed in this paper to study evolutionary scenarios
that rely on more specific physical mechanisms is a natural
avenue for future work.

While other evolutionary scenarios are possible and should
be considered, the present scenario can already be confronted
to experimental tests. First, it is possible to analyze the
physical underpinning of the different coevolution patterns.
Our model predicts that mutating sector positions impacts
function (binding, catalysis) and possibly also thermal sta-
bility, while mutating coevolving contacts outside of sectors
impacts mostly thermal stability. The idea that multiple se-
quence alignments contain correlations of different nature is
already a key principle behind the statistical coupling anal-
ysis, where the most conserved correlations are up-weighted
to highlight functional coevolution [4,21]. This approach is
supported by several experimental studies, including the de-
sign of functional proteins by reproducing the patterns of
functional coevolution [54,55]. The same principles may be
extended to design sequences enhancing or ignoring other
types of correlations found in multiple sequence alignments.
For instance, in the context of the direct coupling analysis,
which also provides a generative model [56], we may predict
that designing sequences at low statistical temperature will
lead to more stable proteins.

A direct experimental test of the central idea that a selec-
tion for exquisite discrimination is sufficient to generate an
extended sector is also possible. This can be done in two steps.
First, proteins can be evolved to have desired specificities,

using methods of directed evolution such as phage or yeast
display [57,58]. These methods allow for the selection of
proteins with high affinity to an arbitrary target ligand from
populations of billions of different variants of a protein. This
selection can be repeated with intervening steps of mutations
and amplification, thus emulating in vitro evolution by nat-
ural selection. Specificity can be controlled by combining
positive selection for binding to immobilized targets with
negative selection for not binding to soluble targets that are
washed away. The approach is powerful enough to generate
proteins specific to a particular conformational state of a target
protein [59] or, in contrast, cross-reactive to a range of variants
of a target protein [60]. Second, the presence of long-range
effects can be assayed by screening and sequencing mutants of
the evolved proteins [61]. Starting from an artificially evolved
protein, a population of mutants can be produced and selected
for specific binding: using high-throughput sequencing, the
frequency of each mutant before and after selection can be
known, which reveals which mutations have an effect on
binding. Our prediction is that proteins evolved to be highly
specific will exhibit more deleterious mutations far from their
binding site. As specificity can be finely controlled during
selection and as sensitivity to mutations can be assayed quan-
titatively and mapped to three-dimensional structures within
a few angstroms, these experiments can not only test the
prediction of our toy model but provide data for elaborating
more accurate models.
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APPENDIX A: FITNESS FUNCTION FOR EXQUISITE
DISCRIMINATION

Two ligands ℓr and ℓw with binding free energies #Fr (a)
and #Fw(a) and chemical potentials µr and µw have, at
thermal equilibrium, probabilities pr (a) and pw(a) to bind,
with

pk (a) = e−β[#Fk (a)−µk ]

1 + e−β[#Fr (a)−µr ] + e−β[#Fw (a)−µw]
, (A1)

where k = r or w. If binding to ℓr is desirable and binding to
ℓw is not, the sequence a has to maximize pr (a) and minimize
pw(a). The problem may be formalized as the optimization of
a fitness function φ(a) that is a decreasing function of #Fr (a)
and an increasing function of #Fw(a).

The choice of φ(a) = min(−#Fr, (a),#Fw(a)) leads to
one of the simplest fitness functions that captures this trade-
off. Imposing φ(a) > 0 is equivalent to imposing F (a, ℓr ) <
F (a, ℓ0) < F (a, ℓw ). Another important factor controlling the
difficulty of discrimination is the relative concentration of
the two ligands. A natural generalization is therefore φ(a) =
min(−#Fr (a) + µ,#Fw(a) − µ), so that φ(a) > 0 is equiv-
alent to imposing F (a, ℓr ) − µ < F (a, ℓ0) < F (a, ℓw ) − µ.
We show in Fig. 6 that taking µ = −1 or +1 gives results
similar to taking µ = 0.
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(b)(a) (c) φ = −∆Fr × ∆Fwφ = min(−∆Fr + 1, ∆Fw − 1) φ = min(−∆Fr − 1, ∆Fw + 1)

FIG. 6. Graphs of Fig. 3 for alternative choices of the fitness function φ(a). (a) φ(a) = min(−#Fr (a) + µ, #Fw (a) − µ) with µ = 1.
(b) φ(a) = min(−#Fr (a) + µ, #Fw (a) − µ) with µ = −1. (c) φ(a) = −#Fr, (a) × #Fw (a). In any case, the results are qualitatively similar
to those of Fig. 3, which corresponds to φ(a) = min(−#Fr (a) + µ, #Fw (a) − µ) with µ = 0.

To further demonstrate the robustness of the results to the
choice of the fitness function, we also show that the less phys-
ical choice of φ(a) = −#Fr (a) × #Fw(a), corresponding to
the requirement that #Fr, (a) and #Fw(a) should both have
large absolute values but opposite signs, also gives similar
results (Fig. 6).

APPENDIX B: UNIDIMENSIONAL MODELS

The potentials U (x, a, ℓ) = U (x, h = ℓ − a) of the models
presented in Fig. 1 have a common symmetry:

U (x,−h) = U (−x, h). (B1)

The free energy F (h) = −β−1 ln
∫

dx e−βU (x,h) is therefore
symmetric around h = 0: F (h) = F (−h), where F (h) is a
decreasing function of h for h > 0. Given ℓ0, ℓr, ℓw, three
different cases thus arise when considering the existence of
a satisfying the condition F (a, ℓr ) < F (a, ℓ0) < F (a, ℓw ).

(i) If ℓw < ℓ0 < ℓr (respectively, ℓr < ℓ0 < ℓw), the con-
dition is satisfied by taking any a < ℓw (respectively, any
a > ℓw) so that ℓw − a, ℓ0 − a, ℓr − a are of the same sign.

(ii) If ℓ0 < ℓw < ℓr (respectively, ℓr < ℓw < ℓ0), the con-
dition is satisfied by taking ℓw − a < −ℓ0 + a < ℓr − a,
i.e., (ℓ0 + ℓw )/2 < a < (ℓ0 + ℓr )/2 [respectively, ℓw − a <
−ℓ0 + a < ℓr − a, i.e., (ℓ0 + ℓr )/2 < a < (ℓ0 + ℓw )/2], so
that ℓw − a, ℓr − a on one hand and ℓ0 − a on the other are
of opposite signs.

(iii) If ℓ0 < ℓr < ℓw (respectively, ℓw < ℓr < ℓ0), the con-
dition cannot be satisfied.

As ⟨x⟩−h = −⟨x⟩h, (ii) involves a change of sign for the
mean conformation while (i) does not. For the models of
Fig. 1, solutions to (i) in fact exist that have arbitrarily small
relative conformational changes, (⟨x⟩hr − ⟨x⟩h0 )/⟨x⟩h0 → 0,
obtained for a → ± ∞.

The problem of exquisite discrimination is to be compared
to the problem of maximizing the affinity to a single target
ℓr . As ∂2F (h)/∂h2 = −(⟨x2⟩h − ⟨x⟩2

h) ! 0, F (h) is concave.
In general, it is even strictly concave, the single-spin model at
zero temperature where F (h) = −|h| being a degenerate case.

This implies that F (a, ℓr ) − F (a, ℓ0) is minimized by taking
a → +∞ when ℓr > ℓ0 and a → −∞ when ℓr < ℓ0. More
generally, the condition F (a, ℓr ) < F (a, ℓ0) may be seen as
a limit of the condition F (a, ℓr ) < F (a, ℓ0) < F (a, ℓw ) when
sign(ℓ0)(ℓ0 − ℓw ) → 0+, corresponding to case (i).

1. Single-spring elastic network

The model of Fig. 1(a) is defined by

U (x, h) = 1
2 k(|x| − r)2 − hx, x ∈ R, (B2)

which verifies U (x,−h) = U (−x, h). Here, k > 0 represents
the stiffness of the spring and r > 0 represents its equilibrium
length. While it is possible to write a general analytical for-
mula for the free energy F (h) at any β, it is more illuminating
to consider the zero-temperature limit β → ∞. In this limit,
F (h) = minx U (x, h) is reached for x = x̂(h) with

F (h) = −1
2

h2

k
− |h|r, x̂(h) = h

k
+ sign(h)r. (B3)

F (h) and x̂(h) are represented in Fig. 1(a) for r = 1, k =
2, h0 = −1/2, hw = 1/4, hr = 3/4.

2. Two-spring elastic network

The model of Fig. 1(b) is defined by

U (x, h) = k(
√

x2 + d2 − r)2 − hx, x ∈ R, (B4)

which verifies U (x,−h) = U (−x, h). Here, k > 0 represents
the common stiffness of the two springs, r > 0 represents their
common equilibrium length, and 2d > 0 represents the dis-
tance between the two fixed points at which they are attached.
In the zero-temperature limit β → ∞, the free energy is the
minimum of U (x, h), reached for the x̂(h) solution to

x̂(h)

(

1 − r
√

x̂(h)2 + d2

)

= h
2k

. (B5)

In Fig. 1(b), the graph of F (h) versus h is obtained by
parametrizing F (h) and h by x̂: F (h) = U (x̂, h(x̂)) and
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FIG. 7. Potential U (x, h) for the model of Fig. 1(b) with springs of different equilibrium length r. U (x, h) is given by (B4) with here
k = 1, d = 1, h0 = −1/2, hw = 1/4, hr = 3/4 such that minx U (x, hr ) < minx U (x, h0 ) < minx U (x, hw ), i.e., the global minimum of the
blue curve is in between the global minima of the red and green curves. For r ! 1, U (x, h) has a single minimum while for r > 1 it has two
minima. Figure 1(b) corresponds to r = 1.

h(x̂) = 2kx̂[1 − r(x̂2 + d2)−1/2]. Figure 1(b) corresponds to
k = 1, r = 1, h0 = −1/2, hw = 1/4, hr = 3/4. Depending
on the value of r, U (x, h) may have either one or two local
minima (Fig. 7).

3. Single-node harmonic model

A single-node Gaussian elastic network model is defined
by

U (x, h) = 1
2 k(x − r)2 − hx, x ∈ R. (B6)

It verifies U (x,−h) = U (−x, h) only for r = 0 but the model
is physically equivalent to a model with potential V (x, h) =
U (x + r, h) + hr which verifies V (x,−h) = V (−x, h) for any
r. The conclusions are therefore the same as for the previous
models. The free energy is

F (h) = − h2

2k
− hr + 1

2β
ln

βk
2π

. (B7)

ω̄r = 0.06 ω̄r = 0.11 ω̄r = 0.14 ω̄r = 0.23 ω̄r = 0.30
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[see Fig . S9]

FIG. 8. Further characterization of the five systems presented in Fig. 4. (a) Evolution of the fitness φ(a) as a function of the number of
iterations in the Metropolis Monte Carlo algorithm. The systems presented in Fig. 4 are the end points of these trajectories (T = 1000). The
initial conditions are random sequences, except for the second system (ω̄r = 0.11), which, for the purpose of Fig. 5, is started from a stable
sequence satisfying F (a, ℓ0 ) < F ∗ = −350 (Fig. 11). All systems converge to φ ≃ 0.4, near the theoretical maximum maxa φ(a) = 0.41,
although with different extensions ω̄r of their sector. (b) Distributions of mutational effects #ai φ when considering all (q − 1)W (L + 1) = 275
possible single mutations. In Fig. 4, the sizes of the blue dots in the last row indicate for each i the mean value of #ai φ over the q − 1 possible
mutations. The distributions share a peak around zero (neutral mutations) and a more or less extended negative tail, commensurate with ω̄r .
The peak around #ai φ ≃ −2.4 that is observed in some cases corresponds to mutants that are effectively equivalent to a single-spin model
with a′ = 0, in which case φ(a′) = min(|ℓr |, −|ℓw|) = −ℓw = −2.
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FIG. 9. Distribution of the free energy F (a, ℓ0) and fitness φ(a) over the sequences of the three alignments studied in Fig. 5. The first
column corresponds to an alignment selected for exquisite discrimination: the sequences have relatively high free energy F (a, ℓ0 ) > F ∗ =
−350 and nearly optimal fitness φ(a) ≃ 0.41. The second column corresponds to an alignment generated under the constraint for stability
F (a, ℓ0 ) < F ∗ = −350: the sequences have a free energy F (a, ℓ0) close to the stability threshold F ∗ but low fitness φ(a) < 0. The third
column corresponds to an alignment selected for exquisite discrimination under a constraint for stability: the sequences have both a free energy
below F ∗ and a near optimal fitness.

It corresponds graphically to an inverted parabola, qualita-
tively similar to F (h) for the models of Fig. 1.

4. Shape space model

In shape space models [62], no flexibility is considered and
the conformations x are formally identified with the sequences
a. The sequences a and ligands ℓ are points in a d-dimensional
Euclidean space and the binding energy between a and ℓ is
a function of their Euclidean distance, in the simplest case
F (a, ℓ) = ∥a − ℓ∥2. In dimension d = 1, this corresponds to
F (h) = |h| and exquisite discrimination is possible when ℓ0 <
ℓr < ℓw provided (ℓ0 + ℓr )/2 < a < (ℓ0 + ℓw )/2, similar to
the criterion derived for elastic models.

de
ns

ity

F (a, 0)

FIG. 10. Free energy of systems optimized for stability, i.e.,
evolved with −F (a, ℓ0 ) as fitness function rather than φ(a). The
resulting free energies reach Fmin ≃ −450, far below the free en-
ergies of the system selected for discrimination without stability
constraint [F (a, ℓ0 ) > F0 = −325 in Fig. 9]. To obtain marginally
stable systems, the stability threshold F ∗ is chosen to satisfy Fmin <

F ∗ < F0. In Fig. 5, F ∗ = −350 with other choices being considered
in Fig. 16.

5. Single-spin model

The model of Fig. 1(c) is defined by

U (x, h) = −hx, x ∈ {−1,+1}, (B8)

which verifies U (x,−h) = U (−x, h). The free energy is

F (h) = −β−1 ln(eβh + e−βh). (B9)

In the zero-temperature limit β → ∞, F (h) = −|h|, which is
identical up to the sign to the free energy of a one-dimensional
shape space model.

Let us assume ℓ0 = 0 and ℓr > 0 to analyze the na-
ture of the solutions satisfying Fr < F0 < Fw where Fr =
F (a, ℓr ), F0 = F (a, ℓ0), and Fw = F (a, ℓw ). We proceed by
examining the different possible cases.

(1) If a > 0, then F0 = −a and Fr = −a − ℓr satisfies
Fr < F0.

iterations iterations

φ

F
(a

,
0
)

(a) (b)

FIG. 11. Evolution of a stable and discriminating system. First,
the system is evolved by Metropolis Monte Carlo with selection for
thermal stability, using −F (a, ℓ0 ) as fitness function. The iterations
are stopped as soon as the required minimal stability, here F (a, ℓ0 ) <

F ∗ = −350, is reached (red dotted lines). T = 1000 additional it-
erations are then performed with selection for discrimination and
constraint on stability, using φ(a) as fitness function and excluding
any mutation leading to F (a, ℓ0 ) > F ∗. (a) Evolution of F (a, ℓ0 ).
(b) Evolution of φ(a). The end point of this evolution is the system
characterized in the second column of Fig. 4, which serves as the
common ancestral sequence for the three alignments of Fig. 5.
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FIG. 12. Dependence on the ligand ℓw . (a) Binding free en-
ergies #Fr and #Fw as a function of ℓw for ℓ0 = 0 and ℓr = 3
(Figs. 3 and 4 correspond to ℓw = 2). For ℓw < ℓ0, evolved sys-
tems verify φ = min(−#Fr, #Fw ) = #Fw < −#Fr , while, for ℓw >

ℓ0, φ = min(−#Fr,#Fw ) = −#Fr = #Fw and the two constraints
are equally at play. When ℓw > ℓr , achieving φ > 0 is not possible.
(b) Extensions of the conformational switches ω̄r and ω̄w as function
of ℓw for the same systems. For ℓw < ℓ0, no switch occurs (ω̄r =
ω̄w = 0), while for ℓw > ℓ0 switches are obtained that display a
wide range of extensions. For each value of ℓw , the dots represent
a mean and the error bars represent a standard deviation over 100
different evolved systems [Fig. 3(a) shows the full distribution of ω̄r

for ℓw = 2].

(1.1) If a < −ℓw, then Fw = a + ℓw and F0 < Fw implies
−a < a + ℓw, i.e., −ℓw/2 < a. In total, −ℓw/2 < a < −ℓw.
This is possible provided ℓw < 0. In this case, Fr − F0 =
−ℓr < 0 and Fw − F0 = ℓw + 2a ! −ℓw, the maximum of
which is reached for â = −ℓw, yielding Fw − F0 = −ℓw > 0.
A solution exists in this case.

(1.2) If −ℓw < a, then Fw = −a − ℓw and F0 < Fw

implies −a < −a − ℓw, i.e., ℓw < 0. In total, 0 < −ℓw < a.
This is possible provided ℓw < 0. In this case, Fr − F0 =
−ℓr < 0, Fw − F0 = −ℓw > 0 independent of the value of a.
A solution exists in this case.

(2) If a < 0, then F0 = a.
(2.1) If a < −ℓr, Fr = a + ℓr and Fr < F0 implies a +

ℓr < a, which is inconsistent with the assumption that ℓr > 0.
No solution exists in this case.

(2.2) If −ℓr < a, Fr = −a − ℓr and Fr < F0 implies
−a − ℓr < a, i.e., −ℓr/2 < a.

(2.2.1) If a < −ℓw, Fw = a + ℓw and F0 < Fw im-
plies a < a + ℓw, i.e., ℓw > 0. In total, −ℓr/2 < a < −ℓw <
0. This is possible provided 0 < ℓw < ℓr/2. In this case,
F0 − Fr = 2a + ℓr ! ℓr − 2ℓw, Fw − F0 = ℓw with a maxi-
mum reached for â = −ℓw.

(2.2.2) If −ℓw < a, Fw = −a − ℓw and F0 < Fw

implies a < −a − ℓw, i.e., a < −ℓw/2. In total,
max(−ℓr/2,−ℓw ) < a < −ℓw/2. This is possible provided
0 < ℓw < ℓr . F0 − Fr = 2a + ℓr ! ℓr − ℓw, Fw − F0 =
−2a − ℓw ! min(ℓr − ℓw, ℓw ), which cannot both
be maximized. If maximizing min(F0 − Fr, Fw − F0),
the optimum is for â = −(ℓr + ℓw )/2 in which case
F0 − Fr = Fw − F0 = (ℓr − ℓw )/2.

All together, the nature of the solution depends on the ratio
ℓw/ℓr .

(i) If ℓw/ℓr < 0, there are two solutions: x̂0 = +, x̂r =
+, x̂w = ± , with x̂w = + for the solution optimizing φ(a).

(ii) If 0 < ℓw/ℓr < 1/2, there are two solutions: x̂0 =
−, x̂r = +, x̂w = ± , with x̂w = − for the solution optimizing
φ(a).

(a)

φ φ

(c) (d)

εε

(b)
φ > 0.35 (94%)

φ φ

φ > 0 (98%)

ω̄r ω̄r

FIG. 13. Relationships between switch extension, evolvability,
and fitness. (a, b) Switch extension ω̄r (a) as a function of the fitness
φ(a) over 1000 different evolved systems, showing either the systems
with φ(a) > 0 [98% of the total, panel (a)] or those with φ(a) > 0.35
[94% of the total, panel (b)]. For these fittest systems, on which Fig. 3
is based, ω̄r (a) is nearly independent of φ(a). (c, d) Evolvability ε(a)
as a function of the fitness φ(a) for the same systems. For the fittest
systems [φ(a) > 0.35, panel (d)], ε(a) is also nearly independent of
φ(a).

(iii) If 1/2 < ℓw/ℓr < 1, there is one solution: x̂0 =
−, x̂r = +, x̂w = +.

(iv) 1 < ℓw/ℓr , there is no solution.
A switch is thus involved whenever ℓ0 < ℓw < ℓr .

APPENDIX C: TWO-DIMENSIONAL SPIN MODEL

Given fields hi(ai ) and couplings Ji j (ai, a j ) defined, re-
spectively, on each node i and each edge i j of the lattice
represented in Fig. 2(a), and given an external field ℓ applied
to the red node b in Fig. 2(a), the free energy F (a, ℓ) is
computed exactly from Eq. (1) by transfer matrices using free
boundary conditions for the spins at the left and right extremi-
ties. Performing the calculation from right to left allows for an
efficient evaluation of F (a, ℓ) for different values of ℓ since in
this case changing ℓ affects only the last layer.

The capacity of a system to discriminate between two
ligands ℓr and ℓw is scored by φ(a) given by Eq. (2). To evolve
systems under a selection for discrimination, a Metropolis
Monte Carlo procedure is followed. It starts from a random
sequence and generates a trajectory by iterating T times the
following steps: a site i is chosen at random, an a′

i ̸= ai is
chosen at random between the q − 1 possibilities, and the
substitution is accepted if r < exp{γ [φ(a′) − φ(a)]} where
r is a random number uniformly drawn in [0,1] and a′ is
sequence a with a′

i substituted for ai. The parameters γ = 100
and T = 1000 are taken. As shown in Fig. 8(a), this number of
iterations is sufficient for φ(a) to reach an equilibrium value.

This value is in most cases close to the theoretical max-
imum that φ(a) may reach (Fig. 3). This maximum is the
same for the two-dimensional spin model and for the single-
spin model. It is reached when F (h0 = a + ℓ0) = [F (hr =
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ε

ω̄r ω̄r ω̄r

ε ε

δ = 0.05 δ = 0.1 δ = 0.2(b)(a) (c)

FIG. 14. Graphs of Fig. 3(b) for alternative choices of the interval δ used to resolve the different phenotypes. The scale ( y axis) differs in
each case but the same trend is observed irrespective of δ: systems with larger ω̄r have significantly larger ϵ.

a + ℓr ) + F (hw = a + ℓw )]/2 with F (h) given by Eq. (B9).
With the parameters taken in the main text, maxa φ(a) ≃ 0.41.

The different systems in Fig. 4 correspond to different
choices of the function hi(ai ) and Ji j (ai, a j ). Different solu-
tions may also be obtained with the same mapping between
sequences a and fields hi(ai ) and couplings Ji j (ai, a j ) but
different initial conditions or/and different series of proposed
mutations. The system in the second column of Fig. 4 (with
ω̄r = 0.11) is evolved under an additional constraint for ther-
mal stability to serve as a common ancestral sequence for the
alignments of Fig. 5.

1. Thermal stability

A system is considered thermally stable if its free energy
is below a fixed threshold, F (a, ℓ0) < F ∗. In Fig. 5, the value
F ∗ = −350 is chosen for being smaller than the free energy of
systems evolved without stability constraints (Fig. 9, top left

panel) but larger than the free energy of systems optimized for
thermal stability (Fig. 10).

To evolve stable and functional sequences, we first gener-
ate a stable sequence by a Metropolis Monte Carlo procedure
where the scoring function is −F0(a) rather than φ(a) and stop
the iterations as soon as the condition F (a, ℓ0) < F ∗ is ful-
filled. Starting from this stable sequence, we then generate a
trajectory as before with the only modification that mutations
causing F (a, ℓ0) > F ∗ are systematically rejected (Fig. 11).
The systems thus produced are marginally stable with free
energies F (a, ℓ0) close to the threshold F ∗ (Fig. 9).

2. Characterization

The mean conformations ⟨xi⟩a,ℓr entering the definition of
ωi,r (a) in Eq. (3) are computed exactly by transfer matrices. In
Fig. 3, only the fittest evolved systems with φ(a) > 0.35 are
considered, which represent 94% of 1000 evolved sequences.

(b)(a)

(c)

ε

φ

φ φ

ε ε ε

t t

r + 1/2, w + 1/2r − 1/2, w − 1/2

t = 50 t = 100 t = 50 t = 100(d)

φ

FIG. 15. Evolutionary response to a change of selective pressures of systems with different sector sizes and evolvability ε. (a) Evolutionary
trajectories consecutive to a change of selective pressure at t = 0 from (ℓr, ℓw ) = (3, 2) to (ℓr, ℓw ) = (2.5, 1.5), starting from the five systems
of Fig. 4, here labeled 1 to 5. The graph shows the average fitness φ and its standard deviation over 100 independent trajectories as a function of
the number t of generations. It illustrates how the systems with a large sector (3,4,5) adapt more efficiently than the systems with a small sector
(1,2). (b) Same as in panel (a) but for a change of selective pressure from (ℓr, ℓw ) = (3, 2) to (3.5,2.5). (c) More systematic analysis starting
from the >940 systems with φ > 0.35 considered in Figs. 13(b) and 13(d) and performing at t = 0 the same change of selective pressure as in
panel (a). The fitnesses of the systems after t = 50 and 100 generations are compared to their evolvability ε. This shows that ε, despite being
defined based on the effect of single mutations only, is informative of the capacity of a system to adapt over multiple generations. (d) Same as
in panel (c) for the change of selective pressure used in panel (b).
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FIG. 16. Varying the stability threshold F ∗ similarly to Figs. 5
and 9 but considering only alignments produced under both selection
for exquisite discrimination and constraint for stability F (a, ℓ0 ) <

F ∗ (‘discrimination+stability”). The three alignments are generated
from a common sequence with F (a, ℓ0) < −400 that is different
from the ancestral sequence of alignments in Fig. 5, and then evolved
using different values of F ∗, as indicated on the top. In each case, a
sector appears as evolutionary conserved. Coevolving contacts are
inferred in every case, although in larger number when the constraint
for stability is higher (F ∗ smaller).

How ω̄r (a) depends on ℓw is shown in Fig. 12 and how it
relates to φ(a) is shown in Fig. 13(b).

To quantify evolvability in Fig. 3(b), we fix an interval
of phenotypes of interest [ℓmin, ℓmax] = [−1, 4], partition it
into small subintervals of length δ = 0.1, and for each single
mutant a′ of a given sequence a find, if it exists, the interval to
which ℓr (a′) belongs. The fraction of subintervals covered by
the (q − 1)W (L + 1) single-point mutants of a defines ε(a),
a measure of the phenotypic diversity of its neighborhood

in sequence space. How ε(a) relates to φ(a) is shown in
Fig. 13(d). How the results depend on the choice of δ is shown
in Fig. 14.

Although based on the effect of single mutations only, the
index of evolvability ε(a) is indicative of the capacity of a
system to respond to a new selective pressure in the course of
an evolutionary trajectory involving a succession of selections
and mutations (Fig. 15).

In Fig. 4, the sizes of the red dots in panel (a) are propor-
tional to ωi,r , defined in Eq. (3); the sizes of the green dots
in panel (b) are proportional to #hiφ, defined for each site i as
the maximal decrease in fitness φ when adding either h′

i = −2
or +2 to hi(ai ) at i; and the sizes of the blue dots in panel (c)
are proportional to #aiφ, defined for each site i as the mean
loss in fitness when considering all possible q − 1 mutations
of ai. The distributions of the effects of all single and double
mutations are shown in Figs. 8(b) and 8(c).

3. Multiple sequence alignments

The three alignments of Fig. 5 are all generated from the
same ancestral sequence, a stable and functional sequence that
corresponds to the second column of Fig. 4 (Fig. 11). The
M = 1000 sequences in each alignment are obtained from
independent trajectories starting from this sequence.

For the first alignment (labeled “discrimination”), no con-
straint of stability is enforced (formally F ∗ = ∞) and selec-
tion is based on φ(a) given by Eq. (2). For the second align-
ment (“stability”), no constraint on discrimination is enforced
(formally γ = 0) and selection is limited to F (a, ℓ0) < F ∗.
For the third alignment (“discrimination + stability”), the two
selective constraints are jointly imposed. The distributions of
F (a, ℓ0) and φ(a) in these three alignments are shown in
Fig. 9. Taking a larger or smaller value of F ∗ leads to similar
conclusions (Fig. 16).

4. Inference of coevolution

Given an alignment, coevolving contacts are inferred by
the pseudolikelihood maximization method for direct cou-
pling analysis [23] using an implementation in Julia [63]
with default parameters except for a reduced alphabet of
q = 5 amino acids. The algorithm outputs a ranked list of
coevolving pairs. Contacts are defined based on the distance d
between nodes in the lattice of Fig. 2(a): d = 1 refers to two

discrimination discrimination + stabilitystability

conservation Di

de
ns

ity

conservation Di conservation Di

FIG. 17. Evolutionary conservation of the top 50 pairs returned by DCA for the three alignments of Fig. 5. Blue, distribution of the
conservation Di over all sites; orange, distribution of Di over the 100 sites involved in the top 50 DCA pairs (sites involved in multiple pairs are
counted multiple times). Except for the extremely conserved sites of the alignment selected for discrimination and stability (last graph), the two
distributions are very similar. This indicates that the coevolving pairs predicted by DCA are distributed all over the structure, independently of
the sector inferred by SCA that corresponds to the most conserved sites (Fig. 4).
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nodes connected by an edge and d " 2 refers to two nodes
connected by d edges through d − 1 intermediate nodes.
The evolutionary conservation of the top 50 pairs returned
by DCA for the three alignments of Fig. 5 is shown in
Fig. 17.

For Fig. 4, the SCA matrix C̃i j is calculated as described
in Box 1 of Ref. [21] without any preprocessing except for
a regularization parameter λ = 0.1. Background frequencies
are taken to be 1/q for all q = 5 amino acids. Figure 4 shows
the mean values ⟨C̃i j⟩ j of each row i of the matrix C̃i j .
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