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ABSTRACT: We have general knowledge of the principles by which catalysts accelerate
the rate of chemical reactions but no precise understanding of the geometrical and physical
constraints to which their design is subject. To analyze these constraints, we introduce a
minimal model of catalysis based on elastic networks where the implications of the
geometry and flexibility of a catalyst can be studied systematically. The model demonstrates
the relevance and limitations of the principle of transition-state stabilization: optimal
catalysts are found to have a geometry complementary to the transition state but a degree
of flexibility that nontrivially depends on the parameters of the reaction as well as on
external parameters such as the concentrations of reactants and products. The results
illustrate how simple physical models can provide valuable insights into the design of
catalysts.

■ INTRODUCTION
Catalysts, which increase the rate of chemical reactions without
being part of their products, are essential to biological processes
as well as to the industrial production of most chemicals. We
have a general theory of catalysis, transition-state theory,1,2 and
detailed knowledge of the mechanisms by which many catalysts
operate, in particular enzymes.3 We also have an increasing
capacity tomodel and numerically simulate catalytic processes at
an atomic level.4 Yet, basic questions pertaining to the existence
of fundamental geometrical and physical constraints to catalysis
are still the object of speculations: To what extent does efficient
catalysis require catalysts to be rigid?5 Or thermally stable?6

Does it impose a minimal size on catalysts?7 Is catalysis subject
to a general rate−accuracy trade-off?8
Answers to such questions would help us uncover the design

principles of natural enzymes,9 direct the experimental evolution
of novel enzymes,10 and clarify the conditions under which life
can emerge.11

Missing is a theoretical framework that is sufficiently elaborate
to account for geometric and physical constraints yet sufficiently
simple to allow for a systematic comparison of varied geometries
and physical designs. For this purpose, the low-dimensional
phase-space formulation of transition-state theory is too abstract
as it does not refer explicitly to the spatial architecture of
catalysts. The atom-level description of models studied by
molecular dynamic simulations is, on the other hand, too
detailed as it prohibits computational exploration of a large
number of architectures.
An alternative lies in the simplified physical models developed

to study properties of proteins other than catalysis, notably
folding,12 binding,13 and allostery.14 Particularly insightful are
elastic network models, which approximate molecules by a
network of beads interacting through elastic springs.15 In their

different guises, these models have provided conceptual and
quantitative insights into several features of proteins, including
thermal fluctuations,16 conformational changes,17 unfolding
kinetics,18,19 specificity,20,34 and allostery.21,22

Here, we propose to adapt the framework of elastic network
models to study catalysis. We illustrate this proposal by defining
and solving a one-dimensional model of catalysis. Our model
may be viewed as a reformulation and systematic analysis of a
model of strain-induced catalysis first suggested by Haldane23

and later partly formalized by Gavish.24−26 While deliberately
minimal, the model addresses a key design challenge: an efficient
catalyst must stabilize the transition state of the reaction to
accelerate it but also bind to the reactant and release the product.
These conflicting demands lead to nontrivial constraints on
flexibility, which our model recapitulates. The model also
demonstrates how the optimal design of a catalyst depends,
beyond the mechanisms of the reaction, on the conditions under
which catalysis occurs. Our analysis is limited to one dimension,
but the model is straightforward to extend, if not to solve, in two
or three dimensions. Our approach thus complements other
bottom-up studies of catalysis24,27 toward a better under-
standing of the geometrical and physical constraints to which
proficient catalysts are subject.
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■ METHODS
Analyzing the physical and geometrical constraints to efficient
catalysis requires a physical model that specifies the range of
designs to be examined and a criterion to quantify catalytic
efficiency. Our choices in defining such a model are guided by a
principle of simplicity, the goal being to obtain a physically
coherent framework where a large number of different
architectures can effectively be explored and compared.
Physical Model. Elastic network models are one of the

simplest physical models where geometry, strain, and energy can
be related. They consist of beads interacting through elastic
springs and have been extensively used to study the internal
motions of proteins.15 Each spring is characterized by two
parameters, a spring constant and a free length. Varying the
number of beads and the parameters of the springs that connect
them allows for the sampling of a large number of designs,
including networks approximating three-dimensional protein
structures.15 Here, we propose to describe not only a catalyst but
also its substrate and their interaction within a common elastic
network model. To this end, we assume that each spring has a
maximal extension above which it breaks and below which it
reforms. More precisely, each spring contributes to the total
energy by k(|x|− l)2/2− k(z− l)2/2 if the extension x satisfies |x|
< z and 0 if |x| > z, where k > 0 is the spring constant, l > 0 is the
free length, and z > l is the maximal extension. When the beads
are subject to Brownian motion, which accounts for their
interaction with a solvent, bonds may thus break or form as a
result of thermal fluctuations.
The rupture of a bond between two beads defines an

elementary chemical reaction. To have a single product as well as
a single reactant, we consider a case where this rupture does not
compromise the connectivity of the substrate. This is achieved
by assuming that a second unbreakable bond (with infinite
maximal extension) links the two beads: the presence of the two
springs then defines the reactant S while the absence of the
breakable spring defines the product P (Figure 1, top line).
In this framework, the simplest catalyst also consists of just

two beads joined by a single unbreakable spring. To describe its

interaction with the substrate, either in the form of the reactant S
or the product P, we assume that each bead of the catalyst can
interact through a breakable spring with one, and only one, of
the beads of the substrate (Figure 1).
In total, our elastic network model thus comprises four beads

and five springs, three of which being effectively absent if their
extension exceeds a given threshold. Assuming the breakable
springs to have a vanishing free length, the model is then
specified by eight parameters (Table 1).

Criteria for Catalytic Efficiency. There is no intrinsically
optimal catalyst. Depending on the setup, and not just the
reaction to be catalyzed, different criteria are relevant to scoring
catalytic activity. Optimizing these different criteria generally
leads to different optimal designs.
Consider for instance a measure of catalytic efficiency

commonly adopted in enzymology, the ratio kcat+ /KM
+ . It assumes

that the rate v = ∂p/∂t at which the concentration of products p
increases depends on the concentration of reactants s and on the
total concentration e0 of catalysts by the Michaelis−Menten
equation,28

= +
+

+v
k e s

K s
.

M

cat 0

(1)

The ratio kcat+ /KM
+ then characterizes the initial rate of the

reaction, when s≪ KM
+ . In general, however, eq 1 indicates that

the rate v depends on the concentration s of reactants. The ratio
kcat+ /KM

+ should indeed be generally interpreted as a measure of
specificity rather than a measure of catalytic efficiency.29

To see how optimizing kcat+ /KM
+ may lead to unphysical results,

consider the simplest case where eq 1 arises, under the scheme

+ → +
−

E S ES E P
k

k k

1

1 2H Ioo where the complex ES is assumed to be

in a quasi-steady state.28 In this case, kcat+ = k2 and kM+ = (k−1 +
k2)/k1. Taking k−1 = 0, we obtain kcat+ /KM

+ = k1, which is
independent of k2. Formally, kcat+ /KM

+ can thus be made
arbitrarily large by minimizing k−1 and maximizing k1,
irrespective of k2, even though k2 controls an essential step
and k2 = 0 means that no catalysis takes place. The catch is in the
assumption s≪ KM

+ , which underlies the choice of the ratio kcat+ /
KM
+ as a measure of catalytic efficiency. When k−1 = 0, this

assumption implies s ≪ k2/k1, which depends on k2 and is
certainly not satisfied when k2 = 0. This simple example
illustrates the need to consider explicitly the concentration s of
reactants to obtain physically meaningful results.a As a corollary,

Figure 1. Elastic network model of catalysis. The reaction S⇌P is
defined on the top. The reactant S consists of two beads connected by
two springs (here represented by vertical lines). One spring (in red)
breaks when its extension exceeds a threshold, which results in the
product P. The system is subject to thermal fluctuations, and the
reaction may thus occur spontaneously. A catalyst E (in blue) similarly
consists of two beads connected by a spring. Each bead of the catalyst
can interact with one bead of the substrate through a breakable spring
(in red) that forms when the distance between the two beads is below a
threshold and breaks when their distance is above this same threshold.
Six nonequivalent states can be distinguished, S + E, ES′, ES, EP, EP′,
and P + E, depending on whether each type of breakable spring is
broken or not.

Table 1. Eight Parameters of the Elastic Network Modela

parameter
spring
constant

free
length

maximal
extension

substrate scissile bond ka 0 za
substrate non-scissile bond kr lr ∞

catalyst internal bond ke le ∞
substrate−catalyst

interaction
ki 0 zi

aEach bond has three parameters: a spring constant k, a free length l
that defines an elastic interaction and a maximal extension z > l
beyond which this interaction is no longer present. The substrate
consists of two beads connected by two bonds, one scissile (za < ∞)
and the other not (zr = ∞). The catalyst consists of two beads
connected by a single bond. The interaction between the beads of the
substrate and those of the substrate is described by breakable springs.
The free lengths of breakable springs are taken to be zero.
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a family of optimal designs is defined, which depend on the
concentration s of reactants and not just on the mechanisms of
the reaction. More generally, optimal designs also depend on the
concentration p of products, which is assumed to be p = 0 in eq 1.
Here, we choose to treat the concentrations of reactants s and

products p as two fixed parameters and to score catalytic activity
by the rate v = ∂p/∂t at which the product is formed. This
assumes a reservoir of reactants and products so that their
concentrations are constant despite the reactions that consume
or produce them. This is, however, not the only possible choice.
One may alternatively consider a closed system with an initial
concentration of reactants and score the concentration of
products after a fixed time, or consider a chemostat with a fixed
in-flow of reactants and catalysts, a fixed dilution rate and score
the out-flow of products.
Solvable One-Dimensional Model. The model presented

in Figure 1 is defined in any dimension. We study it here in one
dimension where it has only three independent internal degrees
of freedom and can be solved analytically. The details of this
solution are presented in the Supporting Information, and we
focus below on the results and assumptions on which they rely.
While these assumptions constrain the range of examined
designs, they are justified a posteriori by the finding of locally
optimal designs within their range of validity.
Uncatalyzed Reaction. In one dimension, a substrate is

characterized by a single internal degree of freedom, the distance
x0 between its two beads, and five physical parameters, the spring
constants ka and kr of the two springs that connect the two beads,
their free lengths la and lr, and the maximal extension za of the
breakable spring (a stands for “attractive” and r for “repulsive”).
Without loss of generality, we assume la = 0 (Table 1). The
number of parameters can be further reduced to two by
considering adimensional quantities (Supporting Information,
Section IA).
As long as the distance x0 between the two beads satisfies |x0|

<za, the two springs are present and equivalent to a single spring
with effective parameters

= + = +k k k l
k l

k k
,ar a r ar

r r

a r (2)

We assume 0 < lar < za < 2lar so that a substrate with initial
extension x0 = lar is more likely to break (x0>za) than to invert
the relative position of its two beads (x0<0); in this
approximation, the interaction potential between the beads is
harmonic (Supporting Information, Section IA). For the
reactant and the product to be stable, the equilibrium distance
with and without the scissile bond must be below and beyond
the breaking point, respectively, which imposes lar<za<lr.
Additionally, we choose parameters so that the state with a
broken bond is the lowest energy state (Supporting Information,
Section IA and Figure 2).
We compute the rates of transition between states using

Kramers’ escape formula,30 which assumes that the time scales of
relaxation within each state are much smaller than the transition
rates. This is valid provided barrier heights are large compared to
kBT where T is the temperature and kB is Boltzmann’s constant
(Supporting Information, Section IB). This leads to the forward
and reverse rates ρu+ (for S→P) and ρu

− (for P→S) given by

ρ

ρ

=

=

β

β

+ −

− −

k

k

e

e

u ar
k z l

u r
k z l

( ) /2

( ) /2

ar a ar

r a r

2

2

(3)

where β = kBT−1. In these formulae, the unit of time is chosen so
that the viscosity γ of the solvent and the curvature ω+ of the
potential at the barrier do not appear explicitly (Supporting
Information, Section IB). Given these rates, the reaction S→P is
thermodynamically favored provided p/s<Keq where s and p are
the concentrations of the reactant S and product P and whereKeq
= ρu

+/ρu− is the equilibrium constant of the reaction.
In what follows, we consider as parameters of the reaction

(Table 1) the values ka = 2, za = 3, lr = 6, kr = 1, and β = 2 so that
lar = 2 and kar = 3 in eq 2. These values, which satisfy the different
assumptions that we make (Figure S1), correspond to the
potential shown in Figure 2.

Catalysis. The catalyst is characterized by the spring constant
ke and free length le of the unbreakable spring that connects its
two beads (Figure 1). Each of these beads can interact with only
one bead of the substrate, and the two interactions are described
by equivalent breakable springs with spring constant ki, free
length li = 0, andmaximal extension zi (Table 1).We assume that
the catalyst is rigid enough to maintain the relative position of its
beads (kBT ≪ kele2/2, Supporting Information, Section IC).
The system formed by the catalyst and the substrate can

possibly be in 23 states, depending on whether each of the three
scissile bonds is broken or not. Given the equivalence between
the two bonds by which the substrate and the catalyst interact,
these eight states define six physically distinct states (Supporting
Information, Section ID and Figure 1). These physical states are
well-defined if they are associated with local minima of the
potential, and we consider parameters for which this is the case
(Supporting Information, Section ID).
When all six states are well-defined, the catalysis is the result of

the series of reactions

+ ′ ′ +
ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

−

+

−

+

−

+

−

+

−

+

E S ES ES EP EP E P
1

0

2

1

3

2

4

3

5

4
H Ioo H Ioo H Ioo H Ioo H Io

(4)

where the intermediate states ES′, ES, EP, EP′ are illustrated in
Figure 1. The transitions ES′⇌EP′ are ignored, which is justified
when the rates ρu

± of the uncatalyzed reaction are negligible
compared to the rates of the catalyzed reaction, that is, ρ1+ ≫ ρu

+

and ρ4−≫ ρu
−. We assume ρ0+ = 1 and ρ5− = 1

b and obtain the other
rates by application of Kramers’ escape formula (Supporting
Information, Section IE).
Under the assumptions that the concentrations e0 of catalysts

(under their different forms), s of reactants, and p of products are
maintained constant and that the concentrations of all

Figure 2. Potential for the uncatalyzed reaction S⇌P. The potential
U(x0) is a function of the extension x0 of the substrate. The two states S
and P are defined by x0<za and x0>za, respectively, with the transition
between the two defining the reaction S⇌P. The parameters (Table 1)
for this graph are ka = 2, za = 3, lr = 6, kr = 1. When computing escape
rates, we assume a smooth curvature ω+ at the transition state x0 = za,
where the value of ω+ is fixed independently of the other parameters
(Supporting Information, Section IB).
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intermediates are at the steady state, the rate v = ∂p/∂t of
product formation takes the form (Supporting Information,
Section IF)

= −
+ +

+ + − −

+ −
v
e

k s K k p K
s K p K

/ /
1 / /0

cat M cat M

M M (5)

The parameters of this reversible Michaelis−Menten
equation28 depend on the eight spring parameters given in
Table 1 via the rates in eq 4. They also depend on the
temperature of the solvent but not on its viscosity, nor on the
curvature of the potential near the activation barriers, which we
assume to be identical for all barriers (Supporting Information,
Section IB).

■ RESULTS
To characterize optimal designs within the model, we maximize
the reaction rate v over the four parameters of the catalyst: ke, le,
which characterize its flexibility and geometry, and ki, zi, which
characterize the strength and range of its interaction with the
substrate (Table 1). The optimum generally depends on the four
physical parameters of the substrate, ka, za, kr, lr (Table 1), on the
concentrations s, p at which the reactant S and product P are
present, and on the temperature T of the solvent, represented by
β = 1/(kBT).
For the substrate, we consider the parameters of Figure 2 ka =

2, za = 3, kr = 1, lr = 6, which correspond to parameters kar = 3 and
lar = 2 for the effective bond of the reactant (eq 2). For the
medium, we first consider the parameters s = 10−1, p = 0, and β =
2.With these values, we find a locally optimal design (Figure S2)
that satisfies all the assumptions involved in the derivation of the
rate v : k̂e = ∞, lê = 3, k̂i ≈13, zî = 0.5.
This solution is consistent with the proposal that an optimal

catalyst must stabilize the transition state of the reaction:31,32 the
catalyst is maximally rigid (k̂e = ∞) with a length that matches
that of the transition state (lê = za). Additionally, the range of
interaction zî is adapted to the free length of the substrate: lê −
2zî = lar. The value of the optimal interaction strength k̂i is, on the
other hand, less obvious to interpret. It takes a finite value,
contrary to what a naıv̈e application of the principle of
transition-state stabilization would predict. The optimal value
of ki represents indeed a trade-off between the need to stabilize
the transition state, which requires rigidity, and the need to
release the product, which requires flexibility (Figure 3). The
energy landscape associated with this optimal design can be
represented in two dimensions as a rigid catalyst with k̂e = ∞
leaves only two independent internal degrees of freedom (Figure
4).
Varying the different parameters around the above values, we

verify that the relationships associated with transition-state
stabilization,

̂ = ∞ ̂ = ̂ = −
k l z z

z l
, ,

2e e a i
a ar

(6)

are always nearly satisfied, while k̂ is, on the other hand,
parameter-dependent (Figures S3 and S4). We analyze in what
follows the determinants of the optimal interaction strength k̂i
assuming that the other parameters of the catalyst are given by
eq 6.
Dependence on Concentrations. Varying the concen-

tration s of reactants at vanishing concentration of products (p =
0), we find that ki has a nontrivial maximum k̂i that decreases
with s (Figure 5). In particular, in the limit s→0 where the

problem is equivalent to optimizing the specificity constant kcat+ /
KM
+ , we have k̂i→∞: the strength of the interaction between the

substrate and catalyst becomes infinite. This result illustrates
how optimizing the ratio kcat+ /KM

+ can lead to unphysical designs

Figure 3. (A) Rates ρσ± for the series of transitions given in eq 4 as a
function of the flexibility ki of the interaction between substrates and
catalysts. As ki increases, the rate ρ2

+ of forward catalysis ES→EP
increases (full red line), along with the rate ρ3− of reverse catalysis ES←
EP (dotted green line), but the rates of product release EP→EP′ (full
green line) and EP′→E + P (full cyan line behind the blue dotted line)
decrease. (B) Michaelis−Menten parameters defined by eq 5. Each
parameter has a maximum for an intermediate value of ki. In these
graphs, the parameters of the substrate are as in Figure 2 and those of
the catalyst other than ki are given by Eq. 6. Note that the rates are not
independent but satisfy∏σρσ

+/∏σρσ
− = (kcat+ KM

−)/(KM
+ kcat− ) = Keq where

Keq is the equilibrium constant of the uncatalyzed reaction (Haldane
relationship).

Figure 4. Energy landscape of a substrate−catalyst system for an
optimal catalyst with infinite rigidity. The two degrees of freedom are
the distance x0 between the two beads of the substrate (the reaction
coordinate) and the relative position x1 between a bead of the catalyst
and the bead of the substrate with which it interacts. The relative
position x2 between the other bead of the catalyst and the other bead of
the substrate is given by x2 = lê − x0 − x1 where lê is the fixed length of
the rigid catalyst. The different states are separated by black lines
corresponding to the thresholds beyond which one of the three scissile
bonds of the model ruptures: x0 = za, x1 = ± zi and x2 = ± zi. Here, we
distinguish between the two states ES1, ES2 and EP1, EP2 instead of
subsuming them under common states ES′ and EP′. The parameters are
as in Figure 3 with ki = 13, and the reference U = 0 is taken to
corresponds to the minimal energy of the state E + S.
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as, in this limit, a catalyst is unable to release its product (Figure
3).
A non-zero concentration of products (p ≠0) introduces an

additional constraint, product inhibition. For catalysis to take
place, p should be small enough for the reaction to be
thermodynamically favored: p/s<Keq where ρ ρ= + −K /u ueq is

the equilibrium constant of the uncatalyzed reaction
ρ

ρ

−

+

S P
u

u
H Io .

Under this condition, we find that k̂i is a decreasing function of
both s and p (Figure 6).

Dependence on Physical Parameters. The dependence
of k̂i on the physical parameters of the substrate ka, za, kr, lr
(Table 1) is shown in Figure 7. The results are at first sight
counterintuitive. When increasing ka, for instance, the activation
barrier becomes higher but the interaction strength k̂i of the
optimal catalyst becomes weaker. Similarly, increasing za
increases the activation barrier but is again associated with a
smaller k̂i. On the other hand, substrates with increased kr or lr
have a lower activation barrier but are associated with a larger k̂i.
To rationalize these results, note that varying ka, za, kr, or lr

implies not only a different optimal interaction strength k̂i but,
from Eq. 6, a different optimal extension lê = za and a different
optimal interaction range zî = (za− lar)/2 (Figures S2 and S3). If
instead of considering

̂ = = −k k v z z l k( ) arg max ( ( )/2, )i a i a ar a (7)

where lar depends on ka (eq 2), as in the red curve of the first
panel of Figure 7, we consider

̃ =k k v z k( ) arg max ( , )i a
k

i a
i (8)

where zi is fixed, we obtain the blue curve, which is an increasing
function of ka. Mathematically, the observation that stronger
bonds are best broken by catalysts making weaker interactions
with their substrate is thus explained by the difference between
optimizing over a single variable versus optimizing over all
variables jointly. Physically, a stronger ka reduces the equilibrium
length lar of the reactant and the catalyst needs to be more
flexible to bind both to this smaller reactant and to the transition
state whose location za is unchanged. Reasoning on just one
parameter may thus be misleading because varying this
parameter may have an incidence on multiple steps of the
catalytic cycle and some of these effects may be compensated for
by varying other parameters. Mutatis mutandis, similar argu-
ments explain the nontrivial dependence on the other
parameters shown in Figure 7.

■ DISCUSSION AND CONCLUSIONS
We introduced a simple but general elastic network framework
for studying the geometrical and physical constraints to which
efficient catalysts are subject and illustrated it with the analytical
solution of an elementary one-dimensional model.
The solution demonstrates the relevance and limitations of

the principle of transition-state stabilization, which reduces
catalysis to binding to (analogues of) the transition state of the
reaction.31,32 While we find that the geometry of optimal
catalysts matches the geometry of the transition state, consistent
with this principle, we also find that binding to this state should
not be maximized. Instead, some flexibility is needed to bind to
the reactant and release the product in addition to stabilizing the
transition state. The additional constraints that these require-
ments imposemight explain why catalytic antibodies selected for
transition-state stabilization with no consideration of product
release are only modest catalysts.33

Binding to the reactant less than to the transition state but
more than to the product, which are all chemically similar, poses
a problem of fine discrimination. As previously proposed,34

physical solutions to such problems can rely on a conformational

Figure 5. (A) Reaction rate v for the catalyzed reaction as a function of
the interaction strength ki for three different concentrations s of the
reactant (and no product, p = 0), showing that the optimal value of ki
depends on s. For ki smaller than the dashed vertical line, the state EP is
unstable and the reaction does not follow the scheme of eq 4. (B)
Optimal interaction strength k̂i as a function of s.

Figure 6. Optimal values of the interaction strength k̂i and optimal
reaction rate v̂ as a function of the concentration s of reactants and p of
products. The white triangle in the upper left corner corresponds to p/
s>Keq where Keq is the equilibrium constant of the uncatalyzed reaction
S⇌P in which case the reaction rate v cannot possibly be positive.

Figure 7. Optimal interaction strength k̂i (in red) as a function of the
physical parameters of the substrate, the strength ka of the scissile bond,
its maximal extension za, the strength kr of the non-scissile bond, and its
extension lr (Table 1). When varying a parameter of the substrate, all
the optimal parameters of the catalyst, and not only k̂i, generally take
different values. If fixing these other variables and optimizing over k̂i
only as in eq 8 is performed, one obtains the blue curves that show
opposite trends. The top graphs can also be related to the bottom
graphs by noticing that the problem depends on the parameters ka, za,
kr, and lr through the dimensionless quantities ka/kr and lr/za (eq 8).
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switch: this is the case in the present model where the relative
positions of the beads of the catalyst and the substrate are
swapped during the transition ES⇌EP (Figure 1).
While the model is not meant to make quantitative

predictions, we note that the optimal strength of interaction
between the substrate and catalyst is systematically larger than
the strength of the bond to break; for instance, in Figure 3B, kcat+

is maximal for k̂i ≈5. This is in contrast to enzymes, which can
catalyze the rupture of covalent bonds by means of weaker
noncovalent interactions. Introducing physical limitations on
the strength and length of the various bondsmay thus contribute
to explaining why enzymes are so large7 and why they make
multiple interactions with their substrate. This line of reasoning
was first followed by Gavish who estimated how much stress an
enzyme can exert on a substrate based on a similar toy model;25

his analysis, however, does not consider the full catalytic cycle
and, in particular, the need for the catalyst to be flexible to
release the product. Besides physical limitations, evolutionary
limitations, in particular the granularity of the sequence space,
may also be relevant to these questions.34

Ourmodel captures another feature of catalysis that is likely to
be very general: efficient catalysts are not only optimized for the
reaction but for the conditions under which catalysis occurs. In
the model, these conditions include the temperature and the
concentrations of reactants and products on which the optimal
degree of flexibility k̂i depends. In another setup, these
concentrations may not be maintained constant and other
parameters may be relevant, such as the concentration of
catalysts or the fluctuations due to low concentrations of
reactants.35

At a physical level, approximating a molecule by an elastic
network is obviously an extreme oversimplification. Enzymes, in
particular, are arguably not purely mechanical devices but as
importantly electronic devices. Harmonic potentials may
describe small distortions of charge distributions as well as
mechanical strain, but their particular form, as our simple
treatment of the solvent36 or our omission of quantum effects,37

certainly limit us to a subset of possible designs.
Within our mechanical framework, several extensions of the

model may, however, already be of interest. First, our solution
applies only under a number of assumptions that guarantee a
sequence of transitions, each described by Kramers’ theory.30

We showed that a locally optimal solution exists within the range
of validity of these assumptions but did not exclude other
solutions beyond this range. Several additional constraints that
are relevant to enzymes would also be interesting to incorporate,
such as constraints on specificity for the substrate3 or long-term
evolutionary constraints.38

Irrespective of new constraints, a primary challenge is to
extend the analysis beyond the four-node elastic network in one
dimension that we solved in this work. The analysis of larger
systems faces two computational difficulties: computing rates of
reaction for networks involving many physical degrees of
freedom and optimizing over the architecture and parameters of
a large number of networks. The first difficulty may be tackled
through molecular dynamics simulations from which rates of
reactions can be estimated. The second difficulty is also limiting
the evolution of natural enzymes, which nevertheless include
very efficient catalysts, and could therefore be overcome by
taking an evolutionary approach. Extending our analysis to larger
networks in higher dimensions is necessary to capture features
absent from our minimal model but likely to be essential to
actual catalysts: beyond one dimension, applying a sufficient

strain is for instance no longer sufficient and orienting this strain
becomes a significant issue; for large networks, entropic effects
may also play a predominant role. Finally, efficient catalysis
might be achieved by more than one design when considering
large systems; alternative designs might then differ in interesting
ways, for example, in their capacity to adapt through small
modifications to new catalytic demands.
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■ ADDITIONAL NOTES
aOne could also ignore KM

+ and score catalytic efficiency by kcat+

but this choice would not account for the rate at which the
product is generated.
bWe can always redefine the concentrations s and p so that it is
the case. When optimizing at given values of s and p, however,
this rescaling matters. A nonequivalent choice would for
instance be to take ρ0

+ = ρ5
− = 4zi with 4zi representing the

“cross section” for the collision between catalysts and substrates.
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