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Conformational changes are observed in many enzymes, but their role in catalysis is highly controversial.
Here we present a theoretical model that illustrates how rigid catalysts can be fundamentally limited and
how a conformational change induced by substrate binding can overcome this limitation, ultimately
enabling barrier-free catalysis. The model is deliberately minimal, but the principle it illustrates is general
and consistent with unique features of proteins as well as with previous informal proposals to explain the
superiority of enzymes over other classes of catalysts. Implementing the discriminative switch suggested by
the model could help overcome limitations currently encountered in the design of artificial catalysts.
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Enzymes can accelerate chemical reactions to a level
currently unmatched by artificial catalysts from hetero-
geneous catalysis [1], supramolecular chemistry [2], cata-
lytic antibodies [3], or computational protein design [4].
Could it be that enzymes follow different principles [5–7],
or are they simply better [8]? An often-cited difference
between enzymes and other catalysts is that enzymes
commonly exhibit conformational changes, including
along their catalytic cycle [9], while artificial catalysts
are generally rigid. Following the principle of transition
state stabilization—the cornerstone of catalysis theory—
indeed leads to the design of rigid catalysts [3,4,10]. On the
other hand, the role that flexibility, i.e., degrees of freedom
internal to the catalyst, may play in enzyme catalysis is
currently very controversial [11–13].
To date, the problem has been studied primarily by

experimental and computational studies of model enzymes,
with general arguments remaining informal [5–8,13,14].
Efforts to develop theoretical physics models mostly date
from the 1970s and have left the issue unsettled [15].
Inspired by the power of simple physical models to clarify
the mechanisms of protein folding [16] and allostery [17],
we use here a minimal model of catalysis to demonstrate in
the simplest and clearest terms how catalysis can benefit
from a particular form of flexibility where a switch occurs
between conformations of very different energy.
This approach extends our previous studies of complete

catalytic cycles with simple physical models that take into
account both geometric and energy constraints [18,19].
These works showed that flexibility is not necessary for
catalysis and could even be detrimental: the best catalysts
that were found were rigid, with no internal degree of
freedom. As solid surfaces in heterogeneous catalysis, they
verify the Sabatier principle [20,21]: they cannot lower the
energy barrier of a reaction without limiting the desorption
of products. Enzymes, on the other hand, are not subject to
this trade-off and can reach a diffusion limit where the only

limitation is the rate of encounter with the reactants [22].
We show here how this is possible with a particular form of
flexibility that we call a discriminative switch.
To explore the design space of catalysts beyond rigid

constructs, a general but tractable modeling framework is
needed. Our previous models were either limited to one
dimension [18] or required molecular dynamics simula-
tions [19]. Here we reformulate the problem with a lattice
model amenable to efficient and accurate calculations. This
model recapitulates our previous results and extends them
in two aspects. First, it allows us to identify a limit on the
efficiency of rigid catalysts. To this end, we quantify the
extent a to which catalysis reduces the activation energy of
a reaction (the energy that appears in Arrhenius law) from a
value hþs in the absence of catalyst to a lesser value ahþs
with a < 1 in its presence. We show that a has a nonzero
lower bound when the catalyst is rigid. Second, our model
allows us to expose a generic principle by which a
conformational switch can overcome this limit and enable
barrier-free catalysis, with a ¼ 0. This principle formalizes
a key difference between biological and nonbiological
catalysts.
Spontaneous reaction.—As in our previous works

[18,19], we consider as a spontaneous reaction the dis-
sociation of a dimer into its two constituent monomers but
here on a lattice with two particles interacting through a
potential EsðdsÞ that is a function of their distance ds in the
lattice [Fig. 1(a)]. The potential excludes two particles from
the same site and has two minima, at ds ¼ 1 for the dimer
and at ds ≥ 3 for the free monomers, with an intermediate
transition state at ds ¼ 2. We parametrize this potential by
the forward and backward potential barriers hþs and h−s .
The position of particle i is denoted xi (i ¼ 1, 2). The

joint positions x ¼ ðx1; x2Þ of the two particles on the
lattice define a configuration with associated energy
EðxÞ ¼ EsðdsÞ. Each particle can independently hop to a
neighboring lattice site to lead to a new configuration y.
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This is taken to occur with a Metropolis rate,
kðx → yÞ ¼ k0minð1; e−½EðyÞ−EðxÞ�=kBTÞ, where k0 sets the
unit of time and T the temperature, which we fix to k0 ¼ 1
and kBT ¼ 1. Other dynamics could be chosen, e.g.,
Glauber dynamics, the essential feature being that the
dynamics is governed by a master equation satisfying
the detailed balance, of the form ∂tπ ¼ Q⊤π, where
πðx; tÞ is the probability to be in configuration x at time
t and where Qxy ¼ kðx → yÞ for x ≠ y with

P
y Qxy ¼ 0.

Starting from any configuration x where the particles are
bound (ds ¼ 1), we consider the first time at which the
particles are free (ds ¼ 3). These sets of initial and final
configurations are denoted S and 2P. Averaging the times
over all initial configurations S and over all trajectories
ending in 2P defines the mean first-passage time
TS→2P, which quantifies the rate of the spontaneous
reaction [19,23].
One approach to estimate TS→2P is to perform kinetic

Monte Carlo simulations [24]. For our purposes, as the
geometry of the lattice is not critical, we consider a small
triangular lattice with N ¼ 12 sites [Fig. 1(b)] for which we
compute TS→2P directly by solving the set of linear
equations

P
y∉2P QxyTy→2P ¼ −1 [25,26], from which

TS→2P is obtained by averaging Tx→2P over all x in S
[see Supplemental Material (SM) [27] ].
An analytical solution can also be obtained in the

limit of high reaction barriers (hþs ≫ 1) when diffusion
is negligible compared to barrier crossing and all
configurations of same energy are effectively equiva-
lent [28,29]. The dynamics then reduces to a three-state
Markov chain,

S⇌
ρ1

ρ−1
S‡⇌

ρ2

ρ−2
2P; ð1Þ

where S represents bound configurations (ds ¼ 1), S‡

those in the transition state (ds ¼ 2), and 2P those where
the particles are free (ds ≥ 3). Assuming instantaneous
diffusion at rate 1, the transition rates between these states
are simply ρ1 ¼ e−h

þ
s , ρ−1 ¼ ρ2 ¼ 1, and ρ−2 ¼ e−h

−
s .

TS→2P is then the solution of just two linear equations
which can be solved analytically to yield TS→2P ¼ 1=ρ1 þ
1=ρ2 þ ρ−1=ðρ1ρ2Þ (see SM [27]). Given the assumption
hþs ≫ 1, we verify Arrhenius law TS→2P ≃ 1=ρ1 ¼ eh

þ
s

with hþs defining the activation energy for the reaction
in the absence of catalyst.
Rigid catalysis.—A catalyst effectively reduces this

activation energy without being modified in the process.
Inspired by heterogeneous catalysis where catalysts are
solid surfaces, we first consider a catalyst consisting of two
binding sites at fixed locations on the lattice [Fig. 2(a)].
When a particle occupies a binding site, the energy is
lowered by ϵcs, which represents the substrate-catalyst
interaction energy [Fig. 2(b)]. The distance between the
binding sites is fixed to Lc ¼ 2, which is the only value of
Lc at which catalysis can occur: if Lc ¼ 1, binding to both
sites stabilizes the dimer and therefore increases the
activation energy, while if Lc ≥ 3, the binding sites cannot

(c)(a)

(d)

(b)

(e)

FIG. 2. Model for rigid catalysis. (a) A catalyst consists in two
binding sites at fixed locations on the lattice (orange squares).
(b) When a particle occupies one of these sites, the energy is
decreased by ϵcs. (c) Catalytic efficiency η ¼ TS→2P=TCþS→Cþ2P
comparing the mean reaction time in this model, TCþS→Cþ2P,
with the mean time TS→2P for the spontaneous reaction (Fig. 1) as
a function of the binding strength ϵcs (hþs ¼ 6 and h−s ¼ 12). This
graph is comparable to so-called volcano plots in heterogeneous
catalysis [30]. (d) Energy landscape illustrating how a rigid
catalyst replaces the single barrier hþs [Fig. 1(a)] by two smaller
barriers hþs − ϵcs and ϵcs. The occupation of the binding sites in
each configuration is represented at the bottom. (e) Catalytic
efficiency of optimal rigid catalysts as a function of the forward
barrier hþs for different reverse barrier h−s , showing that catalysis
involves a threshold beyond which the efficiency scales expo-
nentially.

(b)(a)

FIG. 1. Model for the spontaneous reaction. (a) Potential of
interaction between two particles as a function of their distance
ds, parametrized by the barriers h�s . No two particles can occupy
the same site and therefore Esðds ¼ 0Þ ¼ ∞. (b) Two particles
occupy distinct sites on a triangular lattice with 12 nodes and
periodic boundary conditions along one direction (repeated
purple nodes). The particles initially form a dimer (ds ¼ 1, with
energy h−s − hþs ; e.g., top configuration). Each particle can
diffuse to a neighboring site with rates given by Metropolis rule.
The reaction is completed when the particles are free (ds ≥ 3,
energy 0; e.g., bottom configuration). This requires crossing a
transition state (ds ¼ 2, energy h−s ) and takes a mean time TS→2P

that scales as TS→2P ∼ eh
þ
s for large hþs .
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impact the transition from ds ¼ 1 to ds ¼ 2. A geometry
with Lc ¼ 2 is consistent with Pauling principle [10] which
states that a catalyst should be complementary to the
transition state, here ds ¼ 2.
By definition, catalysis occurs when the reaction is

completed faster in the presence of the binding sites
than in their absence. The rate of the catalyzed reac-
tion is estimated by a mean first-passage time denoted
TCþS→Cþ2P, which is defined and obtained as TS→2P,
except that we account for the interaction with the binding
sites when computing the energy EðxÞ of a configuration x,
and that we restrict the initial and final configurations
Cþ S and Cþ 2P to configurations with no particle at any
of the binding sites. We find that catalytic efficiency,
defined by η ¼ TS→2P=TCþS→Cþ2P, can be >1 (the defi-
nition of catalysis) with an optimum at an intermediate
value of ϵcs [Fig. 2(c)].
This result captures Sabatier principle [20]: an efficient

catalysis must neither bind too weakly nor too strongly to
the substrate. This principle is widely observed in hetero-
geneous catalysis [21] and was also observed in previous
off-lattice models where the optimal catalysts similarly
consisted of two rigidly held binding sites [18,19].
Furthermore, we observe that catalysis (η > 1) depends
not only on the forward reaction barrier hþs , but also on the
reverse barrier h−s , and that η ≤ eh

þ
s =2 [Fig. 2(e)], indicating

that the activation energy is at best reduced by a factor
a ¼ 1=2.
These observations are rationalized by studying analyti-

cally the limit of high reaction barriers (hþs ≫ 1). In this
limit, the dynamics can again be reduced to a Markov
process with only few states, this time five,

Cþ S⇌
ρ1

ρ−1
C·S⇌

ρ2

ρ−2
C∶S‡⇌

ρ3

ρ−3
C·Pþ P⇌

ρ4

ρ−4
Cþ 2P; ð2Þ

where Cþ S represents configurations with a dimer
(ds ¼ 1) occupying none of the binding sites, C·S those
with a dimer occupying one binding site, C∶S‡ those where
the two binding sites are occupied (and therefore ds ¼ 2),
C·Pþ P those where the particles are unbound (ds ≥ 3) but
one occupies a binding site, and Cþ 2P those where the
particles are unbound and none occupies a binding site.
Given the correspondence between energies and rates,

the states and rates can be represented by an energy
landscape [Fig. 2(d)]. This representation illustrates how
catalysis by two rigidly held binding sites works: it replaces
the single energy barrier hþs of the spontaneous reaction
[Fig. 1(a)] by two smaller energy barriers [Fig. 2(c)], a
barrier hþs − ϵcs from C·S to C∶S‡ and a barrier ϵcs from
C·Pþ P to Cþ 2P. Increasing ϵcs decreases the first
barrier but increases the second, which is the trade-off
known as Sabatier principle [20] and the reason for the
nontrivial optimum in Fig. 2(b).

In the limit hþs ≫ 1, the dynamics is controlled by the
highest barrier and the optimum is therefore when the two
barriers are the same, which gives ϵcs ¼ hþs =2. This
explains why the activation energy can be lowered by a
factor a ¼ 1=2 at best. This result is consistent with the
one obtained in an off-lattice model, where a ≃ 0.56 at
best [19]. For this optimum to be reached, the backreaction
C·Pþ P → C∶S‡ must be negligible, or time is spent
recrossing the barriers. This explains the role played by
the reverse barrier h−s [Fig. 2(e)]. These conclusions are
verified by analytical calculations (see SM [27]) showing
that the factor a by which a catalyst reduces the activation
energy satisfies

a ≥
1

2
þmax

�
0;
hþs − h−s
2hþs

�
; ð3Þ

which implies a ≥ 1=2, with a ¼ 1=2 reachable only if
h−s ≥ hþs . This analytical result is obtained in the limit
hþs ≫ 1, but analyzing the lattice model shows that it also
provides an upper bound on the catalytic efficiency η for
large but finite values of hþs (Fig. S1 of SM [27]).
To try to go beyond the limit of Eq. (3), several

extensions of the model may be contemplated. For instance,
we may consider the two binding sites to have different
binding energies ϵ1cs ≠ ϵ2cs. However, the site with highest
energy that most lowers hþs is also inevitably the one that
most limits release, implying a symmetric optimum with
ϵ1cs ¼ ϵ2cs (SM and Fig. S2 [27]). Alternatively, we may
consider relaxing the assumption that the binding sites are
fixed. For instance, we may assume them to fluctuate
between a conformation with Lc ¼ 2 and another with
Lc ¼ 1, possibly with an energy difference ϵc. This is the
type of flexibility “along the reaction coordinate” consid-
ered in previous models [18,19], and we verify again here
that it is detrimental to catalysis (SM and Fig. S3 [27]). This
is simply explained: only when Lc ¼ 2 is the energy barrier
from ds ¼ 1 and ds ¼ 2 effectively lowered.
Catalysis with a discriminative switch.—The limitation

expressed by Eq. (3) is in sharp contrast with the evidence
that some enzymes can effectively totally annihilate acti-
vation barriers [22], which in our model corresponds to
a ¼ 0. This indicates that breaking the trade-offs of
Sabatier principle is possible but by a mechanism that
must differ from those considered previously.
We demonstrate here such a mechanism, which we call a

discriminative switch. In this design, the catalyst can be in
two states, C0 and C1, with the latter having a larger
energy ϵc. These internal states are represented in our
model by a third particle confined to two additional lattice
sites while the two binding sites are kept at the same fixed
locations [Fig. 3(a)]. The internal states are coupled to
the reaction without compromising the geometry or rigidity
of the binding sites themselves. This is achieved by
interaction energies that depend on the internal state of
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the catalyst: when in state C0, the binding energy is as
before ϵcs, but when in state C1, an additional contribution
brings it to ϵcs þ δcs [Fig. 3(b)]. In our model, δcs may be
thought as arising from the interaction with the third
particle which is brought closer to the binding sites in
state C1. In enzymes, this could correspond to additional
interactions arising when a surface loop that is flexible in an
open state C0 comes to surround the substrate in a closed
state C1, with an associated entropy loss ϵc.
The key is then to make the following four choices that

guarantee that no step involves a positive energy barrier:
(1) ϵc ¼ δcs so that the transitions between states where a
single site is bound, C0·S ⇌ C1·S and C0·P ⇌ C1·P, are
barrierless; (2) δcs ≥ hþs so that accessing S‡ through
C1·S → C1∶S‡ involves a reduction of energy; (3) δcs≤h−s
so that no up-hill barrier is introduced for C1∶S‡ →
C1·Pþ P; and (4) ϵcs ¼ 0 so that release C0·Pþ P ⇌
C0 þ 2P is barrierless. With such parameters, i.e., with

ϵcs ¼ 0 and hþs ≤ δcs ¼ ϵc ≤ h−s ; ð4Þ

a path from C0 þ S to C0 þ 2P is defined along which
the energy of the system does not increase at any step
[Fig. 3(d)], provided hþs < h−s .
These arguments are borne out by numerical and

analytical calculations that follow the same principles as
previously, with the internal state of the catalyst treated
as a third particle. This is illustrated in Fig. 3(c), where
TCþS→Cþ2P in the presence of the catalyst of Fig. 3(a)
is found to plateau as hþs increases, consistent with
TCþS→Cþ2P ∼ eah

þ
s with a ¼ 0 (barrierless catalysis).

A variant of the model can also be defined where the two
binding sites are not equivalent but have different param-
eters ϵ1cs; δ1cs and ϵ2cs; δ2cs. This leads to different conditions
for barrierless catalysis (see SM [27]):

ϵ1cs ¼ 0; ϵ2cs ≤ 0; δ2cs ≤ δ1cs ¼ ϵc;

and hþs ≤ ϵ2cs þ δ2cs ≤ h−s ð5Þ

(or the same conditions with the roles of sites 1 and 2
reversed). Here, ϵ1cs ¼ 0 and δ1cs ¼ ϵc guarantee barrierless
transitions C0 þ S ⇌ C0·S ⇌ C1·S and C1·Pþ P ⇌
C0·Pþ P ⇌ C0 þ 2P (with binding at site 1) while hþs ≤
ϵ2cs þ δ2cs guarantees that C1·S → C1∶S‡ is downhill. The
additional constraint δ2cs ≤ ϵc is necessary to prevent a
particle to be stuck at binding site 2. It is indeed generally
not sufficient to have a barrierless path from reactant to
products for barrierless catalysis to occur as alternative
paths may be present that lead to kinetic traps. This
asymmetric design also achieves barrierless catalysis
[Fig. 3(c)] although with a lower catalytic efficiency
(Fig. S4 [27]), but it is more comparable to enzymes
whose substrates are typically asymmetric and where a
distinction is usually made between a “binding site” (site 1)
and an “active site” (site 2).
Conclusion.—Based on the formulation and solution of

an elementary model of catalysis, we have illustrated how a
particular form of flexibility involving a two-state switch
can overcome the limitations of rigid catalysis and effec-
tively enable barrierless catalysis, where the activation
energy of the spontaneous reaction is totally annihilated.
The expression for the bound on rigid catalysis given by
Eq. (3) is specific to our model but reflects a fundamental
trade-off widely observed in heterogeneous catalysis where
it is known as Sabatier principle [21]. The mechanism that
we demonstrated, by which this bound can be overcome
with a switch involving a compensation between two large
(free) energies (ϵc and δcs), is generic and directly echoes
the proposal that biological catalysts differ from nonbio-
logical catalysts by their use of an “intrinsic binding
energy” [5]. This concept has been illustrated in enzymes
[14] and ribozymes [31], but its links to catalytic rate
enhancements, product release, and conformational
changes have never been fully explained, as reflected by
the controversies over the role of flexibility in enzyme

(c)(a)

(d)

(b)

FIG. 3. Model for catalysis with a discriminative switch. (a) We
add a degree of freedom in the form of a red particle that can take
two positions, down (C0) or up (C1). (b) Switching from C0 to C1

involves an energy cost ϵc, and the interaction energy at each
binding site is ϵcs in C0 but ϵcs þ δcs in C1. (c) Mean time of
completion of the reaction in the absence of catalyst (green line),
in the presence of an optimal rigid catalyst (blue line), a flexible
symmetric catalyst with ϵcs ¼ 0 and ϵc ¼ δcs ¼ ðhþs þ h−s Þ=2
(full red line), or a flexible asymmetric catalyst with ϵ1cs¼ϵ2cs¼0,
ϵc ¼ δ1cs ¼ 4hþs and δ2cs ¼ 1.5hþs (dotted red line). For large hþs ,
TCþS→Cþ2P scales as eah

þ
s , where a ¼ 1without catalyst, a ≥ 1=2

with rigid catalysts, but a ¼ 0 with catalysts having a discrimi-
native switch (with h−s taken to be h−s ¼ 2hþs ). Standard devia-
tions can also be computed to show that the distributions of
first-passage times are increasingly distinct as hþs increases
(Fig. S5 [27]). (d) When the conditions given in Eq. (4) are
satisfied, the energy along the path from C0 þ S to C0 þ 2P does
not increase at any step. Catalysis is then barrierless. Examples of
configurations along this path are illustrated at the bottom.
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catalysis [11–13] and the absence of this concept in
reflections to overcome Sabatier principle in heterogeneous
catalysis [32]. Our model clearly exposes these different
links. Finally, from a physics standpoint, our modeling
approach and our results are of interest for studying the
many physical phenomena involving a coupling between a
chemical reaction and a conformational change.
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