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Model definition

For the most general model of flexible catalysis with
a conformational switch, from which the models for the
spontaneous reaction and for rigid catalysis are obtained
as limit cases, a configuration x = (1, 22, 0.) of the sys-
tem consists of the locations x1,zs of the two particles
on the lattice together with the state o, of the catalyst,
which may be open (0. = 0) or closed (o, = 1). In this
representation, x; = 1,..., N for each of two particles
(i = 1,2) where N is the total number of lattice sites
(N = 12 in the results presented in Figs 2-3). Given
that the two particles are indistinguishable and cannot
occupy the same site, the total number of configurations
is N(IN —1). We denote by ds = d(z1,z2) the distance
between the particles, defined by the length of the short-
est connecting path on the lattice, and by o = 1 the
occupancy of binding site k, with o = 0 indicating that
it is vacant (k = 1,2 when considering two binding sites).
In terms of these variables, the energy of configuration x
is

E(z) = Es(ds) + Ec(oc) — Z Efs(JC)Uk (S1)

k=1,2
where
+00 ifds =0
b=l
0 if dg > 3,
Ee(oc) = €coe (S3)
and
E¢,(0c) = e, + 0t,0c (54)

The spontaneous reaction corresponds to €., = €2, = 0
(Fig. 1) and rigid catalysts to €. = 0o and €., = €2, = €.
in the symmetric case (Fig. 2). We also introduce below

an extension of the model to mobile binding sites.

The system can transition from a configuration x =
(x1,22,0.) to any of the configurations y given by
(y17 T2, GC)? (xla Y2, UC)’ (xlv T2, 1- UC) where d(zla yl) =
1 and d(z2,y2) = 1. These transitions occur with

Metropolis rates given by
k(z — y) = min(1, e~ EW=E@))y, (S5)

This defines a master equation with detailed balance in
the form of a continuous-time discrete Markov process,

O(w,t) = Y (w(y, )k(y — @) — w(z, t)k(z = y))

y#

(S6)
where 7(z, t) is the probability to be in configuration x at
time t. This forward master equation can be written in
matrix form as 9;m(t) = Q" w(¢) where 7 (¢) isa N(N—1)-
dimensional vector with components 7(z,t) and where
Q" is the transpose of the (N(N — 1)) x (N(N — 1))
dimensional matrix ) that defines the generator of the
continuous time Markov chain, whose components are

Qxy a { o Zy;ﬁz k(y - 13) if x = Y. (87)

Limit of fast diffusion

In the limit of large barriers h} — oo, diffusion be-
comes negligible and the dynamics can be approximated
by a Markov process with a fewer number of states. For-
mally, the procedure is known as “averaging” and relies
on a clustering of the configurations into subsets such
that intra-transition rates within the subsets are neg-
ligible compared to inter-transition rates between sub-
sets [1, 2]. In our model, the different subsets are defined
by the bonds that are formed between the particles and
the catalyst. They gather configurations of same energy
that are connected through intra-transitions with rates
k(z —y) =1

Moments of first-passage time

For the spontaneous reaction, we define S as the set
of configurations with ds = 1 and 2P as the set of con-
figurations with dy > 3. With T,_,op denoting the mean
first-passage time from = € S to 2P, we define the global



mean first-passage time Ts_,op by

Ts_sop = S ZTx—>2P (S8)
zeS

where |S| is the size of set S.

For reactions in presence of a rigid catalyst, we define
C + S as the set of configurations with dy, = 1 and o1 =
o2 = 0, and C + 2P as the set of configurations with
ds > 3 and 07 = 09 = 0, where the constraint o; = g9 =
0 enforces that the binding sites are initially and finally
free. We define Ty s—scq2p as

Z Ty cyop. (59)
zeC+S

Toys—cyop = |C’+S|

For reactions in presence of a two-state catalyst we
further impose the state of the catalyst to be in the same
conformational state of lowest energy (Cp) in the initial
and final configurations.

We compute mean first-passage times numerically by
linear algebra, using the fact that the distribution of first
passage times fp(t,z) from a configuration © ¢ B to a
set B follows the backward Master equation d; fg(t,z) =
>, Quy f5(t,y) with the matrix @ defined in Eq. (S7) [3].
This relationship implies that the mean first-passage time
T, p = fOOO 7fg(T,x)dr is solution of the equations
ZygB QzyTy—p = —1. Introducing Q defined over con-
figurations not in B by me = gy, this corresponds to
solving the matrix equation QT _,p = —U where U is a
vector whose components are all one.

This approach generalizes to the computation of

the n-th moment of the first-passage time, 7™

z—B T
foc ”fB(T, x)dr, which can be obtained by solving
Q"T%B = (=1)"nU, with the mean first passage time

T, . = T( ) _,p corresponding to the particular case
n = 1. The standard deviations of first passage times
represented in Fig. S5 are computed from the first and
second moments as (T?) — (T(1))2)1/2,

Mean first-passage times for 1d Markov chains

The previous formalism can be applied to obtain an-
alytical expressions when considering one-dimensional
Markov chains.

When the chain is of length 2, of the form

Al\—AQﬁAg

P—1 p—2

(S10)

where p; represents the forward rate from A; to A;;1 and
where p_; the backward rate from A;;; to A;, the matrix
Q is given by

A | 7P P1
Q= p-1 —(p-1+p2) (811)

and applying the formula T4, 44, = —(Q_IU)l with

U =[1,1] leads to

11 _
Taysa, = —+—+ 25 (812)
pL P2 pP1P2

Similarly, for a Markov chain of length 3 given by

Ay A Az Ay (S13)
pP—1 pP—2 pP-3
we obtain
1 1 1 — - —1p—
Tayon, = —+—+—+ L1 P2 P12 gy,
pr P2 pP3 p1p2 P203 P1P2P3

Spontaneous reaction

In the limit of large reaction barrier hf > 1, we can
ignore the contribution of diffusional processes and esti-
mate Ts_.op as the mean first-passage time from S to 2P
for the Markov chain

LN (S15)
P—1
with, since h} > 0 and hy > 0,
—ht
pr~e s pg~1, pa~1 (S16)

as the pre-factors play no role in the A} — oo limit.
Applying Eq. (S12),

1 1 _
Tsop = — + — + 2. (S17)
pL P2 pP1P2
which leads to Ts_sop ~ ehd or, more formally,
. 1
lim —InTs2p = 1. (S18)

hi—oo Ns

Catalysis with symmetric binding sites

We analyze here the model of Fig. 2 with two fixed
binding sites with same interaction energy €.s. As for the
spontaneous reaction, the problem reduces to a Markov
chain in the limit where diffusion is negligible (hf > 1
and €.s > 1). Here, the relevant states are, in addition
to C 4+ S and C' + 2P, state C-S defined by ds = 1 and
o1+ 09 =1, state C:S defined by ds = 2 and 01 + 05 = 2
and state C-P + P defined by ds; > 3 and o1 + 05 = 1.

To obtain a lower bound on T¢4s—,c42p, We can start
from C-S and consider

8L 08 E= 0P+ P Cy2P

P—2 P—-3

(S19)
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FIG. S1: Bound on catalytic efficiency for finite barriers —
Optimal catalytic efficiency n = Ts—op/Tc+s—c+2p for a
catalyst with two rigidly held binding sites (model of Fig. 2)
as a function of the reverse barrier h; for different values of
the forward barrier A, showing that n < (=T With o*
given by Eq. (524). To obtain optimal catalytic efficiencies,
the interaction energy €.s is optimized numerically for each
value of (hy,h7).

to which is associated a mean first-passage time given by
Eq. (S14) (with a shift in the indices since we consider
C-S and not C' + S as initial state),

1 1 1 - -
To.socqap = — + — + — + 22 4 P38
P2 P3 P4 P2P3  P3P4

+ P—2P—3.
P2P3P4

(S20)

If €.s > h, then 1/py ~ e cannot be lower than

Ts—op. We therefore consider €.s < hf. Next, if .5 >

hy, p—2p—3/(p2psps) ~ ehd —hi+ecs cannot be lower than

Ts_op. We therefore also consider e.s < h;. Under
these conditions we have
—(ht—e
p2 ~€ (he CS)a p—2 ~ 17 pP3 ~ 1
p_3g ~ e_(h;_ECS), pPg ~ e_ﬁecs. (821)
It follows that
n
Tc.s—cqap ~ €' (522)

with

hl = max(h} — ecs, €5y 2€cs —hy BT —h +ecs). (S23)

Optimal rigid catalysts have activation energy
min,, ht(ecs). In the limit h; /At — oo of irreversible
reactions where h} (e.s) = max(h — €5, €cs) the opti-
mum over €. is obtained for hf — e.s = €5, leading
to €, = hl/2 and hl(e},) = ht/2. This expression
is valid as long as no other term in Eq. (S23) exceeds
h¥/2 when considering €.s = €i,. The largest value of
hy at which this ceases to be the case is h; = hl due
to the term h} — h; + €. For hy < h}, this term
dominates over e.s and the optimum is obtained when

hi —€s = h¥ — hy + €cs, leading to €, = h; /2 and

>
loe]

=
+

)
M
cos/h

s/

FIG. S2: Catalysis with two rigidly held asymmetric binding
sites — A. The model of Fig. 2 is extended to the case where
the two binding sites have different binding energies, €;, and
€2,. B. Catalytic efficiency n = Ts—op/Tcys—c+2p as a

function of the two binding energies €, and €2, for hf = 6

and h; = 12, showing a symmetry with an optimum when
1 2
6CS = EES‘

ht(e:,) = hf —h; /2. Finally, a*

given by
o1 o s —he
a® = 5 +max | 0, T ,

= minscs hj(ecs)/hs+ is

(S24)

which is the right-hand side of Eq. (1) in the main text.
For finite h}, we find numerically that catalytic ef-
ficiency defined by n = Ts—ap/Tcts—cr2p verifies

(1—a*)hf

n<e , i.e., the same bound applies (Fig. S1).

Catalysis with asymmetric binding sites

Here we consider an extension of the model of Fig. 2
where the two binding sites can have different binding
energies €., and €2,. Numerically, we observe that the
catalytic efﬁmency 77 = Tsop/To+s5sc+2p 1S symmet-
ric in (el,, €2,) with an optimum when €., = €2, (Fig. S2)

We can understand why a symmetric design is optimal
by examining the limit h},e.s > 1 where the dynamics
reduces to a Markov chain with few states, here of the
form

C-S; C.-Pi+P
= Ry = QA
C+S C:st C +2P
R “ =
C-Sy C-P,+ P

where C-S; or C-P; 4+ P refers to configuration where
binding site 1 is occupied and C-Sy or C-P, + P where
binding site 2 is occupied. For simplicity, consider the
case h; — oo (generally the most favorable to catalysis)
so that there is no possible return to C:S* once a transi-
tion is made to either C-P; + P or C-P, + P. As the sys-
tem may end up in any of these states, the time from C:S*
to C' + 2P is dominated by the largest barrier along the
paths C-Pi+ P — C+2P and C-P,+ P — C + 2P, that

is, max(e. We therefore have Tops5c42p ~ ehd

CS’ CS)
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FIG. S3: Catalysis with two mobile binding sites — A. In
this variant of the model, the position of one of two bind-
ing sites is controlled by the location of a third particle (in
red) confined to two additional lattice sites. When the red
particle is on the right site (state Co), the distance between
the binding sites is L. = 2. When the red particle is on the
left site (state C1), the distance between the binding sites is
L. =1, at the cost of an extra energy ¢.. B. Catalytic effi-
ciency n = Ts—op/Tc+s—c+2p as a function of the binding
energy €. and of the internal energy €., showing an optimum
when €. — oco. As in other figures, hY = 6 and h; = 12.
C. Catalytic efficiency n as a function of €. for the value of
€cs that optimizes n when e. = 0 (white horizontal line in B),
showing an optimum when e, — oo, i.e., when the catalyst
cannot access C:1 and is thus effectively rigid.

with

h¥ > max(min(h — ¢!

cs?

hj—egs),max(el ezs)). (S25)

cs)

If we assume without loss of generality that e, > €2, this
1o

gives ht > max(h} —el,, €l,), the exact same trade-off as
in the symmetric case. The optimum is achieved when
el. = ht /2, implying @ > 1/2: an asymmetric design
cannot yield more efficient catalysis than a symmetric
design with €., = ¢2,. Physically, the interpretation is
simple: if one binding site has a larger binding energy,
this energy can be used to accelerate the access to the
transition state but the same site will also be the one
most limiting release, with eventually exactly the same

trade-off as in the symmetric case.

Catalysis with mobile binding sites

We consider here an extension of the model where the
distance between the two binding sites can fluctuate be-
tween L, = 2 and L, = 1. In our framework where
degrees of freedom are described by particles occupying
lattice sites with no two particles on the same site, this
can be described by a particle confined to two extra sites

3 4

2
Os/h

FIG. S4: Catalysis with a discriminative switch — A. The
catalyst has an internal degree of freedom represented by the
position of a third particle (in red) confined to two additional
lattice sites. When the red particle is on the bottom site
(state Cp), the interaction energy is €., at the first binding
site and €2, at the second binding site, with €., = €2, = €., in
the symmetric case. When the red particle is on the bottom
site (state C1), the interaction energy is i, + 0., at the first
binding site and €2, + 62, at the second binding site, with
8L, = 8%, = 6. in the symmetric case. In addition, state C;
is accessed at an energy cost €. > 0. B. Catalytic efficiency
for asymmetric designs as a function of 8}, = e. and 6% for

el, = €2, = 0. The horizontal dashed lines delineate the range

hf <82, < hy (hf =6and h; =12).

(Fig. S3A). This is thus similar to the model of Fig. 3
except that the position of this third particle now dic-
tates whether L. = 2 or L. = 1 without changing the
binding energies, which are always €e.s. For the sake of
generality and to recover a rigid catalyst as a limit case,
we also consider that the “closed state” with L, = 1 is
associated with an extra energy €.. The rigid single-state
catalyst then corresponds formally to the limit €, — oco.
Numerical calculations with this system show that this
limit case is indeed optimal (Fig. S3B-C).

This can be understood again by looking at the limit
h¥ > 1 where the dynamics is described by a Markov
chain with few states,

C0+S<—>CO'S<—>C()ZS'T' C()P CO

L1 1 1 ]

C1+S<—>C’1-S<—>Cl-51 Clp C1

where C}-P stands for Ci.P + P and C}, for C), + 2P.
As the step C1-S — C;-S* involves a barrier hj + €cs
larger than the barrier for the spontaneous reaction h,
it appears from this diagram that the extra state C; is
not favorable to catalysis with this type of design.

Catalysts with a symmetric discriminative switch

We consider here a catalyst with a discriminative
switch as described in Fig. 3. We take again the limit
of large energy barriers where the dynamics can be re-
duced to a Markov process with very few states. The
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FIG. S5: Means and standard deviations of first passage times
for the spontaneous reaction, an optimal rigid catalyst, a flex-
ible symmetric catalyst and a flexible asymmetric catalyst.
The parameters are exactly as in Fig. 3 where only the mean
first passage times are shown. The shaded areas indicate devi-
ations from the mean by one standard deviation. This shows
that in the limit of infinite barriers hY — oo the distribu-
tions of first passage times for rigid and flexible catalysis are
increasingly distinct.

path of interest is the following path marked by plain
arrows,

Co:8 -2 oo -9

(5)T 0"
-5~ 08 —9, 0P o

Co+ S —s -8

" l@)
Ci+S

where C, + S indicates that C is in state o and not inter-
acting with the substrate, C,-S that the substrate occu-
pies one binding site, C:S that it occupies both, C,-P
that one binding site is occupied by a monomer while the
other is free and C, that the two binding sites are free
and the dimer dissociated. Each step A — B involves an

activation energy Ep — E4 and requiring no activation
energy along the path (Ep < E4) implies (1) 0 < €s;
(2) €c < Oess (3) hj < €es + Oes; (4) €cs + Ocs < hy;
(5) des < €05 (6) €cs < 0. In addition, kinetic traps
are avoided if the dashed arrows are also associated with
negative activation energies, i.e., (—1) €.s < h,, which
is implied by (4), and (0) €. > 0, which is an additional
constraint. Assuming 0 < b} < hj, these different con-
ditions are satisfied simultaneously provided

€ecs =0 and h} <d.s =€ <h;. (S26)
Taking for instance €, = 6.5 = (h+hy)/2, we verify that
Tc1s-sc+2p indeed does not scale exponentially with hT
any more (Fig. 3B).

Catalysts with an asymmetric discriminative switch

If relaxing the assumption that the two binding sites
are equivalent, we have a total of five parameters de-
scribing the catalyst: e, €l,, 61, €, 62,. We indicate by
Cy,-Si and C,_-Py that a catalyst in state 0. is bound
to a single particle of the substrate at site & and consider

the following down-hill path:

Co+ S~y -8,

<0>T l@) | <5>T (oﬁ

Ci+S -8y~ o5~ oy o

to which we add the following down-hill paths to prevent
kinetic traps:

The requirements for each of the arrow to be down-hill
are (1) 0 < €z, (2) €c < 0y, (3) hi < €2, + 0%, (4) €2, +
635 < hs_7 (5) 6is < €e (6) 63:5 <0, (_1/) and (_1//)
62, < €e, (—2') and (=2") €2, < 0, which lead to the
conditions summarized in Eq. (7) in the main text.
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