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Appendix B: Supplemental Information

Method for adding disorder in network connectivity.

In the main text, the method to build networks resulted in a connectivity (adjacency matrix Aij) of that of a
triangular lattice. To introduce disorder in the connectivity we place nodes on a triangular lattice with their positions
given by Rlat

i . The nodes are then displaced by a random uniform perturbation ∆Ri ∼ ([−ϵ, ϵ], [−ϵ, ϵ]) to achieve a
disordered structure Rdis

i = Rlat
i +∆Ri. An adjacency matrix is defined as follows,

Aij =

(
1, i ̸= j and ||Rdis

i −Rdis
j || < c

0, otherwise

The value of c is chosen such that the mean coordination z =
P

ij Aij/N takes a desired value.

3d Networks

Three dimensional networks share the same definition as 2d networks (Eq. (A1), (A2), (A3)) except for the
following differences: ri = (xi, yi, zi), nodes are initially placed on a 3d hexagonal closed packed lattice rather than
2d triangular lattice, and ∆Ri ∼ ([−aϵ, aϵ], [−aϵ, aϵ], [−aϵ, aϵ]). The values of the distance cutoff and spring constant
for the harmonic repulsion term remain the same in 3d, ℓrep = 0.7 and krep = 2.

1d model at zero temperature

For a system of harmonic springs, the energy takes the form,

V (x) =
1

2

X

i

ki(x− ℓi)
2 =

1

2

 X

i

ki

!�
x−

P
i kiℓiP
i ki

�2

+ Vmin (B1)

where

Vmin = min
x

V (x) =
1

2

 X

i

kiℓ
2
i −

(
P

i kiℓi)
2

P
i ki

!
. (B2)

The 1d model of allostery is given by

U(x) =
1

2
ka(x− ℓact)

2 +
1

2
ka(x− ℓallo)

2 +
1

2
km(|x|− ℓm)2. (B3)

Putting (B3) in the form of (B1) gives

V (x, ℓm) =
1

2
(2ka + km)

�
x− ka(ℓact + ℓallo) + kmℓm

2ka + km

�2

+ Vmin(ℓm) (B4)

where

Vmin(ℓm) =
1

2

�
ka(ℓ

2
act + ℓ2allo) + kmℓ2m − (ka(ℓact + ℓallo) + kmℓm)2

2ka + km

�
. (B5)

U(x) can be written as the piecewise function,

U(x) =

(
V (x,−ℓm), x ≤ 0

V (x, ℓm), x > 0.
(B6)

The ground state of U is defined by E = minx U(x) = min± Vmin(±ℓm). Taking the physical conditions ka > 0,
km > m and ℓm > 0, this gives

E(ℓact, ℓallo) =
ka

2(2ka + km)


ka(ℓact − ℓallo)

2 + km(ℓ2act + ℓ2allo + 2ℓ2m)− 2km|(ℓact + ℓallo)ℓm|
�

(B7)
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Cooperative allostery is computed as

∆∆E = E(ℓ1, ℓ0) + E(ℓ0, ℓ1)− E(ℓ1, ℓ1)− E(ℓ0, ℓ0), (B8)

where ℓ0 and ℓ1 represent the solvent and the ligand, respectively. In the 1d model ∆∆E reduces to,

∆∆E =
ka

2ka + km


ka|ℓ1 − ℓ0|2 + 2km|ℓm|(|ℓ1|+ |ℓ0|− |ℓ1 + ℓ0|)

�
. (B9)

If ℓ1 = −ℓ0 and δ = |ℓ1 − ℓ0|,

∆∆E =
ka(kaδ + 2kmℓm)δ

2ka + km
. (B10)

The mechanism changes from single-state to multi-state at the transition rest length ℓ∗m = δ/4. When ℓm < δ/4,
∆∆E is optimized at km = 0 and can not exceed kaδ

2/2. When ℓm > δ/4, ∆∆E is optimized at km = ∞ and can
take arbitrarily large values (∆∆E = 2kaℓmδ). The first term in (B10) is the contribution from being able to actuate
the (potentially) soft allosteric mode and the second term is the contribution from the two-state switch.

1d model at finite temperature

In the canonical ensemble, the partition function Z of a system with energy U(x) = kx2/2 at temperature T (the
Boltzmann constant is folded in T such that T has units of energy) is given by

Z =

Z
e−E(x)/T dx =

Z ∞

−∞
e−kx2/2T dx =

r
2πT

k
, (B11)

and its free energy is

F = −T lnZ =
T

2
ln

k

2πT
. (B12)

The energy of the 1d model (B3) takes the form of two parabolas that abut at x = 0. The partition function is

Z =

Z 0

−∞
e−V (x,−ℓm)/T dx+

Z ∞

0

e−V (x,ℓm)/T dx (B13)

Setting κ = 2ka + km and λ(ℓm) = (ka(ℓact + ℓallo) + kmℓm)/(2ka + km) gives

Z = e−Vmin(−ℓm)/T

Z 0

−∞
e−κ(x−λ(−ℓm))2/2T dx+ e−Vmin(ℓm)/T

Z ∞

0

e−κ(x−λ(ℓm))2/2T dx (B14)

=
1

2

r
πT

κ

"
e−Vmin(−ℓm)/T

�
1 + erf

�
−
r

κ

2T
λ(−ℓm)

��
+ e−Vmin(ℓm)/T

�
1 + erf

�r
κ

2T
λ(ℓm)

��#
(B15)

where erf is the error function.

In the limit where km/ka → ∞ the energy simplifies to

U(x) =





ka

2


(x− ℓact)

2 + (ℓm − ℓallo)
2
�

x = −ℓm
ka

2


(x− ℓact)

2 + (ℓm − ℓallo)
2
�

x = ℓm
∞ otherwise

(B16)

and the free energy becomes

F (ℓact, ℓallo) = −T ln
h
e−

ka
2T ((ℓm+ℓact)

2+(ℓm+ℓallo)
2) + e−

ka
2T ((ℓm−ℓact)

2+(ℓm−ℓallo)
2)
i

(B17)

Taking ℓ0 = −δ/2 and ℓ1 = δ/2 the cooperativity is

∆∆F = F (δ/2,−δ/2) + F (−δ/2, δ/2)− F (δ/2, δ/2)− F (−δ/2,−δ/2), (B18)
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and after some algebra,

∆∆F = 2T ln cosh (kaℓmδ/T ). (B19)

In the opposite limit where km/ka → 0,

U(x) =
ka
2
(x− ℓact)

2 +
ka
2
(x− ℓallo)

2 (B20)

= ka

�
x− ℓact + ℓallo

2

�2

+
ka
4

(ℓact − ℓallo)
2

(B21)

(B22)

and the free energy is

F (ℓact, ℓallo) =
ka
4
(ℓact − ℓallo)

2 − T

2
ln

πT

ka
(B23)

Taking ℓ0 = −δ/2 and ℓ0 = δ/2 the cooperativity is

∆∆F = F (δ/2,−δ/2) + F (−δ/2, δ/2)− F (δ/2, δ/2)− F (−δ/2,−δ/2) (B24)

and after some algebra

∆∆F =
1

2
kaδ

2. (B25)

When T > 0 the transition point between mechanisms occurs for

ℓ∗m(T ) =
T

kaδ
ln
h
ekaδ

2/4T +
p
ekaδ2/2T − 1

i
(B26)

Thermodynamical models

Our models can be coarse-grained to obtain a thermodynamical description comparable to the formulation of the
MWC and KNF models. This is achieved by defining “states” with given free energies, from which equilibrium
probabilities are computed from Boltzmann’s law. A state corresponds in our models to a distinct local minimum of
the energy or free energy landscape. At finite temperatures, a further requirement is that the free energy barriers are
large relative to the temperature so that a local equilibrium occurs within the states. If two states have free energies
F1 and F2 with a maximum F † along the conformational coordinate that connects them, this assumption amounts
to F † − max(F1, F2) ≪ T in units where the Boltzmann constant is kB = 1. A description can also be given in
terms of kinetic rates k1→2 and k2→1 for the transition between the states, which may, for instance, be of the form

k1→2 = k0e
−(F †−F1)/T and k2→1 = k0e

−(F †−F2)/T .

One possible coarse-graining of the 1d model could assert that two conformational states exist: state T corresponding
to x < 0 and state R corresponding to x > 0. This coarse-graining separates the two states by the barrier at x = 0.
With two binding sites, there would be a total of eight states: T00, T10, T01, T11, R00, R10, R01, R11 (the last
two digits represent the state of ligand binding as in Figure 1). Taking ℓ0 and ℓ1 to be the rest lengths of the springs
representing the unbound and bound states, the free energies of the eight states are,

FTij = −T ln

�Z 0

−∞
e−

1
2 (ka(x−ℓi)

2+ka(x−ℓj)
2+km(x+ℓm)2)/T dx

�
(B27)

FRij = −T ln

�Z ∞

0

e−
1
2 (ka(x−ℓi)

2+ka(x−ℓj)
2+km(x−ℓm)2)/T dx

�
(B28)

A quantity of particular interest is the fraction of occupied binding sites Y at a ligand concentration c,

Y (c) = 0 ∗ P00(c) +
1

2
∗ P01(c) +

1

2
∗ P10(c) + 1 ∗ P11(c) (B29)

Y (c) =
ce−FT10/T + ce−FR10/T + c2e−FT11/T + c2e−FR11/T

e−FT00/T + e−FR00/T + 2ce−FT10/T + 2ce−FR10/T + c2e−FT11/T + c2e−FR11/T
(B30)
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FIG. S1. Ruggedness and frustration increase with σ. (A) The energies of the 25 lowest minima relative to the ground state
energy (E0) for a network with σ = 0 (blue) and σ = 0.3 (red). The networks with ordered interactions (σ = 0) have a ground
state far more stable than any other minima, whereas networks with disordered interactions σ = 0.3 have many near-degenerate
low energy states. (B) We measure the ruggedness of an energy landscape as the number of minima within ϵ of the ground
state energy (E0). For each σ, we plot the ruggedness averaged over 100 random networks. Higher σ implies more low energy
minima relative to the ground state. Minima are found with the ground-state finding algorithm (Methods). (C) Frustration, the
extent to which bonds are stressed, is measured by the ground state energy E0. A ground state where all springs are relaxed
has E0 = 0. For each σ, 100 random networks are generated and their ground states are estimated with the ground-state
finding algorithm (Methods). (D) The error in the estimated ground state energy Ê0 for an increasing number of iterations of
the ground state finding algorithm for 100 random networks. (σ = 0.3 and population size p = 20). At 100 iterations, 96%
of ground state estimates are correct. The energies after 10000 iterations are taken to be the true ground state energies, E0.
These data show that the ground state can be estimated with sufficient accuracy even when the energy landscapes are rugged
with many minima.

Appendix C: Supplemental Figures
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FIG. S2. Robustness of Fig 3AB with respect to various parameters. Each panel shows the fraction of networks that undergo
a multi-state conformational change upon binding ligand ncc/n, the mean overlap of the allosteric mode with the softest mode
q1, and the mean cooperativity ∆∆E for 100 random (gray) and evolved (green) networks. In panels B-Q only one parameter
is changed from the reference in panel A. (A) Same data as in Figure 3AB where the parameters of the simulation are:
ℓ0 =

√
3− 0.3, ℓ1 =

√
3 + 0.3, k0 = k1 = 1, Nevosteps = 500, Nsoft = 2, Tevo = 10−5, Q = 5, ksoft = 0.01, Niterations = 100, and

spatial disorder ϵ = 0.1. (B-F) Results do not significantly change with different choices of ligands except that cooperativity
decreases when the difference between ℓ0 and ℓ1 decreases, as predicted by the 1d model. (G) Results do not change when the
number of interactions of the Monte Carlo evolution is increased from Nevosteps = 500 to Nevosteps = 2000. (H) When there are
no soft interactions permitted between nodes, Nsoft = 0, (i.e. if K(si, sj) = 1 for all entries) no cooperativity evolves at low
σ. (I) Doubling the number of soft interactions from Nsoft = 2 to Nsoft = 4 does not significantly change the results. (JKL)
Changing the temperature of the evolutionary Monte Carlo Tevo does not change the results as long as it is sufficiently small,
Tevo < 10−3. At Tevo ≥ 10−3 nearly no cooperativity evolves at small σ. This result was previously described in[15]. (MN)
The results are unchanged with a different number of node types Q. (O) The results are unchanged when the softness of the
soft interactions is increased to ksoft = 0.1. (P) The results are unchanged if the number of iterations of the basin hopping
algorithm is increased from Niterations = 100 to Niterations = 500. (QR) The results are unchanged when the spatial disorder is
removed ϵ = 0 (corresponding to Dij = 0) or increased ϵ = 0.2. (S-X) The results are unchanged if networks are built with an
alternate method where disorder is allowed in the connectivity (Aij). z is the mean coordination (see SI).
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FIG. S3. 3d networks show same behaviors as 2d networks. (a) A visualization of a 5 × 5 × 5 3d network. Blue springs on
opposite sides of the network are the active and allosteric sites. The data in the following subplots are from simulations with
the following parameters: ℓ0, ℓ1 = 2

√
3/3 ∓ 0.15, k0 = k1 = 1, Nevosteps = 103, Nsoft = 2, Tevo = 10−5, Q = 5, ksoft = 0.01,

Niterations = 100, and spatial disorder ϵ = 0.1. (BC) Mean energy of the fully-solvated (blue) and fully-bound (green) networks
along the conformational coordinate y interpolating between the two ground state structures R00 and R11 of evolved networks,
averaged over 100 replicates. When σ = 0 (subplot B), the energy has a single minimum, and when σ = 0.2 (subplot C),
energies are bistable. (DE) The mean overlap (averaged over 100 replicates ) ⟨qk⟩ between the structural displacement upon
binding ligand ∆r and each normal mode of the evolved network vk (qk = |vk · ∆r/∥∆r∥ |) plotted against the mean mode
stiffness ⟨λk⟩ . When σ = 0 (subplot D), the softest modes overlap with the allosteric displacement indicative of a single-state
mechanism. (F) The fraction of networks that undergo a multi-state conformational change upon binding ligand ncc/n, for 100
random (gray) and evolved (green) networks. (G) The mean of the maximum overlap of the allosteric mode with any of the 10
softest modes qk, k = 1, . . . , 10, for 100 random (gray) and evolved (green) networks. (H) The mean cooperativity ∆∆E for

100 random (gray) and evolved (green) networks. (IJK) The error in the estimated ground state energy Ê0 for an increasing
number of iterations of the ground state finding algorithm for 100 random networks (population size p = 20). For σ = 0.2 and
100 iterations, 95% of ground state estimates are correct. The energies after 104 iterations are taken to be the true ground
state energies, E0.
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FIG. S4. The properties of the 1d model recapitulate the properties of the 2d elastic network. k̃m and ℓ̃m are the 2d elastic
network analogs of the 1d model’s reduced parameters km/ka and ℓm/δ. See methods for their definitions and motivations.

(ABC) For each σ, ℓ̃mδ of each of the 100 random and 100 evolved networks is plotted, showing an estimate of the range of

possible values of ℓ̃mδ given σ. (DEF) The mean k̃m and ℓ̃m and ∆∆E are plotted for 100 random and 100 evolved networks

at different σ. Consistent with the 1d model, non-allosteric random networks have a large k̃m and small ℓ̃m. When σ is small,
networks approach the single-state mechanism limit (ℓm = 0, km = 0). As σ increases, networks localize towards the multi-state
mechanism limit of large km, large ℓm. Error bars are 95% CI.
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FIG. S5. 1d model at finite temperature. (A) Free energy surfaces as a function of different binding ligands, corresponding to
varying the rest lengths ℓact and ℓallo of the springs defining the active and allosteric sites. The two panels on the left show
the free energy surfaces of a single-state mechanism (km = 1 and ℓm = 0) at T/ka = 0 and T/ka = 0.2. The two panels on
the right show the free energy surfaces of a multi-state mechanism (km = ∞ and ℓm = 0.5) at T/ka = 0 and T/ka = 0.2. (B)
The cooperativity ∆∆F as a function of the normalized quantities km/ka and ℓm/δ for different temperatures. (C) A plot of
ℓ∗m(T ), the value of ℓm where the single and multi-state mechanisms provide equal cooperativity at temperature T .
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FIG. S6. A continuum of mechanisms exists in the 2d elastic network. (A-D) The barrier height ∆Ubarrier (see SI text for
definition) and overlap with the softest mode q1 is plotted for both random (grey points) and evolved (green points) networks
at different values of rest length interaction disorder σ. Grey and green horizontal lines indicate the mean of q1 for the random
and evolved networks, respectively. (E-H) The barrier height ∆Ubarrier and the maximal overlap of the allosteric displacement
with any mode, maxi qi is plotted for both random (grey points) and evolved (green points) networks at different values of
rest length interaction disorder σ. Grey and green horizontal lines indicate the mean of maxi qi for the random and evolved
networks, respectively. (I,M) The energy along the allosteric displacement U(y) and the overlaps of each mode qk vs. the mode
stiffness λk of an example evolved sequence from the population shown in A and E. (J,N) U(y) and qk vs. λk of an example
evolved sequence from the population shown in B and F. (K,O) U(y) and qk vs. λk of an example evolved sequence from the
population shown in C and G. (L,P) U(y) and qk vs. λk of an example evolved sequence from the population shown in D and
H. The networks in I-P were chosen as examples of when q1 ⪆ 0.5 even when energy barriers start to emerge. Networks with
multi-state conformational change have ∆Ubarrier > 0.


