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I. MARKOVIAN CATALYTIC CYCLES

The simplest catalytic cycle is Markovian, and comprises only one intermediate state
denoted as C'S, which is accessible from either the unbound states C'+ .S or C' + P and can
also transition back to those states. Graphically, the cycle is represented as

k‘l k,() k‘g (Sl)

with k,, denoting the forward rate of an elementary reaction and k_,, its reverse rate. Given
that we consider the mean first-passage time T¢,s..cyp from the initial state C'+ S to the
absorbing state C'+ P, the transitions with rates k_y and k_5 can be ignored and an equivalent
representation is

crP&ors2osorp, (S2)
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where C' + P is repeated on both sides.

When in C+S, the mean time before any transition is T, = 1/(ko+k1 ), the probability to
transition to C'S is poys—cos = k1/(ko+ k1) and the probability to transition directly to C'+ P
is poss—cip = 1 —porscs = ko (ko + k1).! Similarly, when in C'S, the mean time before any
transition is T = 1/(ko+k_1), the probability to transition to C+P is pes.csp = kof (ka+k_1)
and the probability to transition back to C'+ S is pcs—c+s = k-1/(ka +k_1). In terms of these
quantities, the mean first-passage time from C'+ S to C' + P, denoted T s5.c+p, can be
expressed as a function of the mean first-passage time from C'S to C' + P, denoted Tos_.cp
as?3:

Toisscep = Tovs + pors—csTos—cp (S3)
Tessc+p = Tos +pes—cslors—c+p, (54)
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ie.,
1 k1
Torsscwp = Tosocs S5
C+S—C+P k0+k1+k0+k1 CS—>C+P ( )
1 k_y
Tes—cip = Tois—c+p (56)

+
k?l-f—kg k1+]€2

Solving these equations lead to an explicit expression of Tx,s.c+p as a function of the
elementary rates:

kl + k—l + kg

Toiso = . ST
CrS=0rP k’ok’_l + k?()kg + k‘lkfg ( )

To highlight constraints, we can rewrite Eq. (S7) as follows:
Tovs—cvp = Lsop + Pcat(Tcat - TS—>P)7 <S8>

with TS_>p = 1/]{30, Tcat = 1/]{32 and
1

Pcat = <89>

1+ (1 + ]C_l/kg)k'o/]f1’

where T, denotes the mean time to form the product once the substrate is bound to
the autocatalyst, while p.,; denotes the probability to reach C'+ P from C + S through the
catalytic pathway (C'S — C'+ P). Indeed, let p; = k1/(ko+k1) be the probability to transition
from C'+ S to CS and py = ko/(k_1 + ko) the probability to transition from C'S to C + P.
The probability to reach C'+ P from C' + .S through the C'S - C' + P is:

G- D1P2 1
cat = 1- "t = = . S10
Peat =11 (7;)( P2) pl)m L-(1=-p2)p1 1+ (1 +k_1/ka)ko/ky ( )

where n is the number of times the back transition C'S — C + .S occurs.

II. GENERAL CRITERION FOR CATALYSIS

We present here the derivation of Eq. (S8) for the general case where the spontaneous
reaction S — P occurs at a given rate. A single S and a single C are considered. We
assume that a state C-S can be defined as a set of configurations where C' and S are
not interacting and where the probability and the nature of their future interactions are
equivalent. This state defines a boundary between interacting and non-interacting systems.
The initial configuration of the system denoted (C+5)y, is assumed to be a non-interacting
configuration and the final configuration, as well the final configuration C'+ P. From (C'+.S)y,
the system may either reach C--S by diffusion or reach C' + P through the spontaneous
reaction S - P. Once in C-S, C and S may either move apart to C'-S* or move closer to
C-S~, where C--S* and C-S~ represent configurations infinitesimally close to C--S. From
C--S*, the system may either come back to C--S or reach the absorbing state C'+ P through
a spontaneous reaction. From C--S~, on the other hand, it may either come back to C-S
or reach the absorbing state C' + P through catalysis. We will compare this situation to a
situation where C--S7 is inaccessible, which may for instance be implemented in numerical
simulations by confining the system in a box with reflecting boundaries defined by C--S": the
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FIG. S1: States in the derivation of the necessary and sufficient condition on catalysis. We consider
3 intermediate states in addition to the initial state (C' + S)o and the final absorbing state C' + P.
The probabilities to transition between these states are indicated next to the arrows. The times
to transition from (C + S)g to C-S given py = 1, from C-S* to C-S given p = 1 and from C-S
to C'+ P given ¢ = 1 may follow arbitrary distributions, but the times to transition from S to P
in absence of C' are assumed to be exponentially distributed. The time to transition from C-S
to (C-S)" given ¢ = 0 is assumed to be negligible. The mean time T(¢.g),~c+p to reach C'+ P
from (C +.9)g is expressed in terms of the overall probability pcat = pog/(1+ (1 —q)p) to take the
catalytic (red) route and of the mean time Ta to transition from C-S to C' + P given ¢ = 1 as
Tc+8)o—C+pP = Ts—p+peat (Teat —Ts- p) where T, p is the mean time to reach P from S in absence
of C.

mean time to reach C'+ P from C-S in this case is what we define as T,,; and also denote
as Te.gcvp\(c+9), Where \(C' + S) indicates that the configurations C' + S are excluded.
To derive Eq. (S8) we make the following hypotheses: S — P occurs at a rate ko, (C +
S)o = C-S takes a mean time T(,C+S)0—>C~~S and C-S* —» C--S amean time T/, ¢, .4, both in
absence of spontaneous reaction. Eq. (S8) then results from combining the following three
equations which are derived below.
First, we have

Tc+syg—c+r = Polo.5o0ep + (1 =po)Ts-p (S11)

where pg is the probability to reach C-S from (C' + S)o before any spontaneous reaction

(Fig. 1).
Second, we have

Tes—c+p = Tesscvrcrs + (1= @) Te.swowp (S12)

where ¢ is the probability to reach C' + P from C-S without ever revisiting C-S*
(Fig. 1). Here Te.scip\css could also be written Te.socvp\c.s+ and the assumption is
that TC~S—>C~S+\(C~S)* =0.

Third, we have

Te.stscep = plossop + (1 =p)Ts.p (S13)

where p is the probability to come back to C-S after an excursion in C' + .S before any
spontaneous reaction (Fig. 1).

Combining these three equations leads to

Tcrsy9-cep = pPlosscrp\cas + (1= p)Tsop (S14)
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which is equivalent to Eq. (S8), with

_ Poq
T 0 - (515)

To interpret p, note that it may also be written
p= po(1-q)"p"q (816)
n=0

where the sum is over the probabilities that (C' + S)¢ reaches C-S (factor py), “unbind”
n times to C' + S (factor (1 - ¢)") and “rebinds” as many times to C-S (factor p*) before
following the catalytic route towards C' + P (factor ¢): p therefore represents the overall
probability to reach C'+ P through catalysis when starting from (C' + ).

A. Derivation of Eq. (S11)

Consider that starting from (C'+S5), the system takes a mean time T{¢.g), before it either
reaches C-S, with probability pg, or C' + P, with probability 1 - py so that

Tic+s)o-c+p = T(c+s) + Polo.5-04P- (S17)

Eq. (S11) is then obtained by noting that T(c.s), = (1 = po)Ts-p. To show this later
relation, the essential ingredient is that the spontaneous reaction occurs within a time ¢ that
is exponentially distributed with a rate ko such that Ts_p = 1/kg. The time 7 for (C' + )
to diffuse towards C-S in absence of any possible spontaneous reaction may, on the other
hand, follow an arbitrary distribution x(7). Under these assumptions, we have

Po = fooo drx(7) [Too dtke™*t = /Ooo dryx(7)e ™ = (e7*7) (S18)

were (-) denotes an average over 7 based on x(7), and

Tiers), = fo " drx(r) fo " dthoe UHL(E < 7) + 71 (7 < 1)] (S19)
T t
- [ dt thoe™ ot + 7 f dt koe o' :%(1—@-’“07)) (520)
0 T 0

from which it follows that Ty s), = (1 = po)Ts-p-.
Note that if 7 is exponentially distributed with mean 1/k; we have simply po = k1/(ko+k1)
and T(c+s), = 1/(ko + k1) which leads directly to Ticus), = (1 = po)Ts-p.

B. Derivation of Eq. (512)

Let o be the probability that when in C-S the system goes towards C-S- rather than
towards C-S* (in no time) and let 8 be the probability that when in C-S~ the system will
come back at least once to C-S. By definition,

Te.s—c+p = 0dogop+ (L -a)Tesowp (521)
Tes-—»csp = B(Tos—cs +Tosscp) + (1= B)Tes-—cip\cs (S22)
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where Tt.5-c+p\c.s denotes the time to reach C' + P from C-S- without ever visiting C-S.
From these equations it follows that

1
1-ap

The point is that Tt.; = Te.sc+p\c+s can be written in the same way but with o =1 since
it correspond to a case where accessing C-S* is excluded,

Te.s—c+p = (a(BTc.s—cs+ (1= B)Tes—cipes)) + (1 - a)Togrcsp) . (523)

1
Teat = m [BTC~S*—>C~S +(1- 5)T(C-S-»C+P)\C-S] (524)
This leads to .
To.s-c+p = m [04(1 - ﬁ)Tcat + (1 - Oé)TC~S+—>C+P] (825)

which is equivalent to Eq. (S13) with

1- 046 n=0

which can be interpreted as the probability to go from C-S to C-S~ (factor «), come back
n times to C-S (factor f") and in each case immediately diffuse to C-S= (factor a”) an
arbitrary number n of times (sum over n) before eventually reaching C' + P (factor 1 - f3),
i.e., q is the probability to reach C'+ P from C-S without ever visiting C-S™.

q=M=a(§;ﬁnan)<1—ﬂ) (526)

C. Derivation of Eq. (513)

The derivation of Eq. (S13) is essentially equivalent to the derivation of Eq. (S11) with a
starting point C-S* instead of (C'+5)g, with p the probability to reach C-S replacing py and
with x(7) now representing the distribution of times to reach C-S from C-S* in absence of
any possible spontaneous reaction.

III. CATALYSIS FOR DIMER DISSOCIATION

We consider here the catalytic cycle represented in Fig. 1. To derive necessary and
sufficient conditions, we start by applying Eq. (S8) twice,

Ters—csp = (1= po)Tsop + pole.scap\crs (527)
Tessopcss = (1=p1)Tsmp + piTcsmepcs (528)

and then relate Te.g.cip\cvs t0 Te.smcp\cvs by introducing v = P(C-P - C-S\C + S5):

Te.s-c+p\c+s = To.ssc.p\c+s + To.p-cip\C+s (529)
Tepscip\crs = V(To.pscs\oes + To.s-cep\crs) + (1= 7)To.pocep\cs (530)

ie.,

To.s-c+p\C+5 = (1= (TC~S—>C~P\C+S +9Te.pocs\ces + (1= ’Y)TC’-P—>C+P\C~S) (S31)
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All together,

Tovsscsp = (1 = Po p11 _J) Ts.p+ 1p_07 (mTesmcpcs + VTopacscrs + (1=7)Topacip\cos)

(S32)
which can also be written in the form To,s.crp = (1 = peat) Tsp + peat Tear With
1 _ [ee]
pcat=po(1— N ’;1):,00(1—(1—;)1)27") (533)
- n=0

that can be interpreted as the probability for the reaction not to occur spontaneously, neither
through C'+ S - C' + P nor through C-S - C-P.

When v =0, for instance because the reaction is irreversible, this simplifies to peat = pop1
and Teay = Tewsoo.p\o-s + 1 Te.p~c+p\c.s and a necessary condition for catalysis is therefore
Tc;s_,c.p\c.s < TS_>p, which implies TC~S—>C:P\C~S < TS_,p and TC:P—>C~P\C:S < T5_>p. On the
other hand, there is no corresponding constraint on T¢.s.c.s\c+s- Instead, a necessary
condition on the transition C-S — C:S takes the form p, > Te.poc.p\cis/Ts—p.

IV. EXAMPLE OF A CATALYTIC CYCLE WITH AN OUT-OF-CYCLE
INTERMEDIATE

Here we derive the distribution of the first passage times P[t.,] for the catalytic cycle
with an out-of-cycle intermediate presented in Fig 3, showing that when the distribution ..
is not exponentially distributed, a molecule C' that is not a catalyst in a single copy with a
single substrate may be a catalyst in a condition with n. > 1 catalysts and n, > 1 substrates.

The catalytic scheme and notations for the states and rates are presented in Fig 3A.
Pltcas = t] = OPcyp(t)/0t where Poyp(t) is obtained by considering the probabilities to be
in each state at a function of time when starting at ¢t = 0 from .5 and when ignoring state
C+S:

atpcs(t) = —(/{35 + ]C;;)Pcs(t) + ]{ngcls(t)
O Peys(t) = k3 Pes(t) - k3 Peys(t) (534)
0y Poyp(t) = k3 Pos(t)

with PCS(O) =1, Pcls(O) =0, and PC+p(0) =0.

The first two equations are decoupled from the third and are turned into a system of
linear equation by considering the Laplace transforms P(s) = [, P(t)e* of the probability
densities P(t)*:

{Spcs(s)—l =—(k?2++k§)Pcs(S) +k§PCl,5'(3) (835)
sPcys(8) = k3 Pos(t) - k3 Poys(t)
Solving these equations and applying the inverse Laplace transform, we obtain Pg,s(t) and
finally P[teat = t] = k3 Pos(t):

_ Ak

]P)[tcat = t] = 2B

((—]{;; — ]{;g + k;g + A)e—(k§+k§+k’§—A)t/2 _ (_k,g _ k?;; 4 k§ _ A)e—(k§+k§+k§+A)t/2)

(S36)
where A = \/-4kik; + (ki + ki + k3)? and B = (k)2 + (k3)2 + (k3)2 + 2k3 k3 — 2ki k3 + 2k3 k3.
This is the probability density represented in Fig 3B.
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In the limit k3 <« k3, k3, it simplifies to

Plt, = t] = ki | e ekt 4 ﬂe—k;kgt/(k;mg) 37
: (k5 + k)?
and if further assuming k3 <« k3,
o kky -
Plteas =] = k3 (e‘k2t + ﬁe-kst) (S38)
2

This shows that P[t] has two time scales: 1/kJ at short times and 1/k; at long times.

V. CONDITIONS FOR CATALYSIS IN PRESENCE OF MULTIPLE
CATALYSTS OR MULTIPLE SUBSTRATES

We consider here the particular case where either the substrate or the catalyst is in a
single copy and show that for three elementary reactions catalysis occurs in presence of
a single substrate and multiple catalysts or in presence of a single catalyst and multiple
substrates only if it occurs with a single substrate and a single catalyst. The three reactions
are a unimolecular reaction, a reaction with a bimolecular substrate, and another with
bimolecular products. We assume a decomposition of the catalytic cycles as in Fig. 2, and
further assume them to be Markovian. The rate p; for each transition 7 is the product of the
constant reaction rate k; and the numbers of reactant(s), e.g., p; = kin[C][S]. Importantly,
the conclusion obtained for these reactions does not extend to any spontaneous reaction, as
the counter-example of Fig. 3 shows.

The conclusion can be drawn from the inspection of Fig. 2 when noting that the introduc-
tion of multiple catalysts (second row) or multiple substrates (third row) effectively modifies
the catalytic cycle with a single substrate and a single catalyst (first row) in three possible
ways. By modifying some of the rates (represented by the black arrows of large size), by
adding additional states, or by effectively increasing the rate of the spontaneous reaction
(when increasing the number of S). Crucially, however, the added states are only increasing
the time to complete the catalytic route, and the modified rate in the main cycle are confined
to pg to pi but pf only increases with the number of substrates, which effectively makes
catalysis harder, while p7 is involved in the efficiency of catalysis but not in the criterion
for the presence of catalysis (see section III A 3). These observations imply that in all three
cases catalysis occurs in presence of a single substrate and multiple catalysts or in presence
of a single catalyst and multiple substrates only if it occurs with a single substrate and a
single catalyst.

To demonstrate it more formally in one example, consider for instance the case of the
reaction with a bimolecular substrate when considering a varying number n of catalysts C'
and a single substrate S (central box in Fig. 2). In this case, p; is effectively multiplied by
a factor n and an extra (futile) state has to be considered where two different catalysts are
bound by one substrate each. The transition to this out-of-cycle intermediate 2C'S+(n-2)C
from CS + S+ (n—-1)S occurs at rate pf, = p7(n - 1) and release from this state at a rate
Po1 = 2p7- The condition for catalysis, T}, c+5-n.c+p < Ts-p, can be derived by solving the
system of equations associated with the reaction scheme (as in Section ?7?). It leads to

1 1 > * (p5 + pd 1
— = f2+ N PO{(PQ+ fg) <— (S39)
Py P3 P2Ps3 Po1(P3P3) Po
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Unimolecular Bimolecular Substrate Bimolecular Product
C+5 *p—z C+P c+2s €3 C4p c+s €3 Cctop
0 Ao Po
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il 23 2
s Socr cS+S S CS, S £ CP+P
X + +
2 2 P
nC+2S8 <-- C+P nC+S <-: C+2pP
nC+S €3 nC+P = -
N N N I N N
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CS+m-1C S CP+(n=1)C CS+S+(n-1C S CSH+0-1)C CS+(n—1)C = CP+(n—-1)C+P
2CS+(n—-2)C 2CP+(n-2)C
C+nS 3 C+(n—-DS+P C+nS €5 C+(n-2S+P C+nS €3 C+(n-1)S+2P
N I N I 1} 1
(nS,1C) | CS+(m—-1S = CP+(n-1S CS+n—-1S S cP+@n-25 CS+(n-1)S S CcP+(n-1DS+P
1 2 1 1 1 1
CS+(n—-2)S+P CP+(n—-2)S+P CS+(n—-3)S+P CS+(n—-4)S+P CS+(n—-2)S+2P CP+(n—-2)S+3P

FIG. S2: Catalytic cycles for three particular reactions: a unimolecular reaction, a reaction with
a bimolecular substrate, and another with bimolecular products. In the first row, we initiate the
systems with one substrate and one catalyst; in the second row, with one substrate and n catalysts;
in the third row, with one catalyst and n substrates. The rate p; for each transition ¢ is the product
of the constant reaction rate k; and the numbers of reactant(s), e.g., p7 = ki n[C][S].

We thus verify that p} is not involved and that the presence of an out-of-cycle intermediate
makes the criterion for catalysis more stringent compared to the case with a single catalyst
for which this criterion is simply
1 1 5 1
7+7+fi<7
P2 P3 PaP3 Po

(S40)

where the rates p3, p; and p3 are unchanged. Similar derivations can be done for the other
cases.

We have considered here bimolecular reactions where the substrates or products are
indistinguishable. If they are distinct and if their binding occur sequentially, i.e., C'+S1+S55 <>
CS <« (0SS« C+PorC+S5S < (CS < CP+P, < (C+ P + P, then no out-of-cycle
intermediates are present.

In Fig. 4, we computed the mean-first passage time for each reaction scheme in Fig. 2
and used the following reaction rates: for the unimolecular reaction with no out-of-cycle
intermediate, k§ = 0.15, kT =2, k7 =1, k§ =1, k5 =1, and k3 = 1; for the reaction with a
bimolecular product, kf = 0.15, k =0.5, ky =1, k3 =1, k5 =1, k§ = 1, and k3 = 0.3; for the
reaction with a bimolecular substrate, k§ = 0.08, k¥ = 0.1, k7 =1, k3 =1, k5 =1, and k5 = 1.
For the unimolecular reaction with an out-of-cycle intermediate, we set kf = 0.15, k3 =1,
k3 =0.001, k5 = 0.0001.
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S+ CP
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(n-1P P m— CP + nP
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S+C P 4 C
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CS + nP = CP + nP

FIG. S3: Catalytic cycle with multiple products for a unimolecular reaction S — P initiated with
a single substrate, a single catalyst, and n products. The difference with the case of no product
(n = 0) is the upper path that includes the spontaneous reaction together with the binding and
unbinding of a product to the catalyst.

VI. CATALYSIS IN PRESENCE OF MULTIPLE PRODUCTS

To illustrate how catalysis in presence of multiple products requires catalysis to take
place in presence of no product, consider for instance the unimolecular reactions S - P
represented in Fig. 3, with initially one substrate S, one catalyst C' and n products P. The
final state of interest is C'+ (n + 1) P. This state is reached either through the spontaneous
reaction, the catalyzed reaction (path at the bottom) or through the upper path, which
corresponds to the spontaneous reaction plus the binding/unbinding of the catalyst to a
product.

The conclusion follows from a simple observation: the presence of products only opens
an addition path (the upper path of Fig. 3), in addition to the spontaneous (middle) and
catalytic (lower) paths that are present in absence of the product. As this additional path
includes the spontaneous reaction together with the binding and unbinding of the catalyst
to a product, it cannot be faster than the spontaneous reaction. As a consequence, catalysis
must rely on the lower path, which is the same as in absence of products. T... < Ts_p is
therefore necessary for catalysis irrespectively of the number n of products.

VII. CATALYSIS BEYOND THE FIRST PRODUCT

We have represented in Fig. 5A the formation of 3 products from 3 substrate molecules
with 3 catalysts, when products are removed upon formation, and in the context of an
irreversible spontaneous reaction. In this scheme, we see that the dynamics essentially boils
down to moving from one column to the one on its right. We have shown that this can be
faster than the corresponding spontaneous reactions (reactions on the top of the columns)
only if there is at least one state on a left column that departs to a state on the right faster
than the spontaneous reaction (Eq. (13)). A sufficient condition for catalysing n, reaction
is that each of these moves is faster that their corresponding spontaneous reaction. A
necessary condition is that the mean time for n, spontaneous reactions to proceed is longer
than a combination of moves:
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E[min(tgllp’ Tt 7tg'n—s>1_3r)7 tgzlx27 e 7t§;2 ] Tt ]E[min(t,(s‘llpa e 7t,(5'715>1_3r_np)7t£i27 e 7t§;‘;np))]
<E[min(ty p,...,t§5p)] + -+ E[min(tg) p, ... £52,")]

However, we note that even in the simplest case where products are systematically removed
whenever produced, the total time T}, 5:n.c~(n,-np)S+n.Cin,p cannot be computed as a sum

n
27«50 T(ns—T)S+ncC—>(nS—np)S+ncC+P-
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