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Abstract

The sequences of antibodies from a given repertoire are highly diverse at few sites located

on the surface of a genome-encoded larger scaffold. The scaffold is often considered to play

a lesser role than highly diverse, non-genome-encoded sites in controlling binding affinity

and specificity. To gauge the impact of the scaffold, we carried out quantitative phage dis-

play experiments where we compare the response to selection for binding to four different

targets of three different antibody libraries based on distinct scaffolds but harboring the

same diversity at randomized sites. We first show that the response to selection of an anti-

body library may be captured by two measurable parameters. Second, we provide evidence

that one of these parameters is determined by the degree of affinity maturation of the scaf-

fold, affinity maturation being the process by which antibodies accumulate somatic muta-

tions to evolve towards higher affinities during the natural immune response. In all cases,

we find that libraries of antibodies built around maturated scaffolds have a lower response to

selection to other arbitrary targets than libraries built around germline-based scaffolds. We

thus propose that germline-encoded scaffolds have a higher selective potential than matu-

rated ones as a consequence of a selection for this potential over the long-term evolution of

germline antibody genes. Our results are a first step towards quantifying the evolutionary

potential of biomolecules.

Author summary

Antibodies in the immune system consist of a genetically encoded scaffold that exposes a

few highly diverse, non-genetically encoded sites. This focused diversity is sufficient to

produce antibodies that bind to any target molecule. To understand the role of the scaf-

fold, which acquires hypermutations during the immune response, over the selective

response, we analyze quantitative in vitro experiments where large antibody populations

based on different scaffolds are selected against different targets. We show that selective

responses are described statistically by two parameters, one of which depends on prior
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evolution of the scaffold as part of a previous response. Our work provides methods to

assay whether naïve antibody scaffolds are endowed with a distinctively high selective

potential.

Introduction

The idea that evolution by natural selection is not only leading to adaptations but to a propen-

sity to adapt, or “evolvability”, has been repeatedly put forward [1–3]. As demonstrated by a

number of mathematical models, evolvability can indeed emerge from evolutionary dynamics

without any direct selection for it [4–7]. Yet, theoretical insights have not translated into

experimental assays for measuring and controlling evolvability in actual biological systems.

Biomolecules as RNAs and proteins are ideal model systems for developing such assays as they

are amenable to controlled experimental evolution [8]. For proteins, in particular, several bio-

physical and structural features have been proposed to correlate with their evolvability, most

notably their thermal stability [9, 10] and the modularity and polarity of their native fold [11].

A major limitation, however, is the absence of a measurable index of evolvability quantifying

evolutionary responses to compare to biophysical or structural quantities.

Here, we introduce a quantitative approach to address this issue and present experimental

results that point towards an evolutionary determinant of evolvability in the case of antibodies.

Antibodies are particularly well suited to devise and test new approaches to measure and con-

trol evolvability, as diverse libraries of billions of different antibodies can be manipulated in

vitro by well-established screening techniques [12]. The natural diversity of antibodies is

remarkable. Their variable regions span a large phenotypic diversity, allowing specific binding

to virtually any molecular target. At the sequence level, this diversity has different origins.

First, the variable regions of naïve antibody genes are formed by combining two or three out

of tens of genomic segments, with additional randomization at the junction between segments.

Second, variable regions of antibodies undergo random somatic mutations along their

sequence and selection for higher affinity through the fast evolutionary process of affinity mat-

uration [13]. At the structural level, antibody variable regions consist of a framework display-

ing variable surface loops called complementary determining regions (CDRs), the most

variable one, CDR3, being partially encoded by the randomized sites at junctions between seg-

ments [14]. The surface loops, which contain most but not all of the substitutions found in

maturated antibodies, and especially the CDR3 loop, are thought to be the primary determi-

nants of binding affinity and specificity [14]. However, the framework has been shown to play

an essential role in several cases. In particular the large fraction of framework somatic muta-

tions found in many broadly neutralizing antibodies to HIV have been reported to be required

to confer neutralization towards a broad range of viral strains [15].

Antibody variable regions are thus subject to evolution by natural selection on two distinct

time scales: their genome-encoded segments evolve on the time scale of many generations of

their host, as all other genes, while naïve antibodies assembled from those genome-encoded

segments additionally evolve on a much shorter time scale as part of the immune response in

the process of affinity maturation. Importantly, affinity maturation-associated mutations are

somatic and the sequences of maturated antibodies are not transmitted to subsequent genera-

tions. Germline antibody genomic segments, whose transmitted sequences are the starting

point of affinity maturation, are thus well positioned to be particularly evolvable, as evolving to

increase antibody affinity to antigens is part of their physiological role.
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As a first step towards quantifying and controlling the evolvability of antibodies, we previ-

ously characterized the response to selection of antibody libraries built around different scaf-

folds [16]. We define scaffold as the genome-encoded sites of an antibody sequence. In a naïve

antibody, the scaffold amino acids are identical to germline amino acids; in affinity maturated

antibodies, some scaffold sites are somatically mutated. We took for these scaffolds the heavy

chains (VH) of natural antibodies, including their framework regions and CDR1 and CDR2

loops, and built libraries by introducing all combinations of amino acids at four consecutive

sites in their CDR3 loop. Using phage display [17], we selected sequences from these libraries

for their ability to bind different molecular targets and analyzed the relative enrichment of dif-

ferent antibody sequences through successive cycles of selection and re-amplification by high-

throughput sequencing [18]. Comparing experiments with libraries built on different scaffolds

and selected against different targets led us to two conclusions. First, we quantified the vari-

ability of responses to selection of different sequences within a library and found this variabil-

ity to differ widely across experiments involving different libraries and/or different targets.

Second, we observed a hierarchy of enrichments between libraries, with multiple sequences

from one particular library dominating selections involving a mixture of different libraries.

These results raised two questions: (i) How to relate the hierarchies of enrichments between

and within libraries? (ii) How to rationalize the differences between scaffolds that are all

homologous?

Here, we address these two questions through the presentation of new data and new analy-

ses. First, we propose to characterize the hierarchies within and between libraries with two

parameters for which we provide interpretations from the three standpoints of physics, infor-

mation theory and sequence content. One of these parameters, σ, reports the phenotypic vari-

ability within a library and thus quantifies the potential of a library to respond to selection.

Second, we present new experimental results and re-analyze previous results to provide evi-

dence that the degree of maturation of an antibody scaffold is a control parameter for its selec-

tive potential. Our approach thus provides a general and quantitative framework to study

experimentally the selective potential of biomolecules. Our results are also, to our knowledge,

the first to indicate that long-term evolution may have endowed germline antibodies with a

special ability to respond to selection.

Experimental design

In the absence of mutations, the outcome of an evolutionary process is determined by the

properties of its initial population. Our initial populations are libraries made of sequences with

a common part, which we call a scaffold, and 4 positions x = (x1, x2, x3, x4) that are randomized

to all N = 204 combinations, where 20 is the number of natural amino acids. We subject these

populations to successive cycles of selection for binding against a target T and amplification.

The critical property of a sequence x present in the initial population is its enrichment s(x), the

factor by which it is enriched or depleted from one cycle to the next (see Box). The mapping

x 7! sL,T(x) from 4-position sequences x to enrichments generally depends both on the scaffold

that defines the library L and on the target T that defines the selective pressure.

Experiments are designed for s(x) to reflect the binding affinity of an antibody with CDR3

sequence x to the chosen target T (S1 Text 1.1). In effect, however, selection does not depend

exclusively on the CDR3 sequence x and the target T as phage-displayed antibodies may also

be selected because they bind to something else than the target (the recipient or another

phage) or because they bind to the target through their antibody scaffold. Such non-specific

binding is generally negligible for the CDR3 sequences x of antibodies with top binding affini-

ties to the target, but it dominates the selection of the majority of antibodies, which typically
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show no or weak CDR3 sequence-specific binding to the target. Following common practice

in the field, we therefore perform three cycles of selection to enrich the population in strong

binders. We are interested in properties of the scaffold that favor these large enrichment val-

ues, either relative to other sequences within the same library (same scaffold) or relative to

sequences from different libraries (different scaffolds).

Our previous experiments involved 24 different libraries, each built on a different scaffold

consisting of a natural VH fragment [16]. These fragments originate from the germline or the

B cells of organisms of various species. Scaffolds from the germline have not been subject to

any affinity maturation, while scaffolds from B cells are taken from maturated antibodies

which have evolved from naïve antibodies to bind strongly to antigens encountered by the

organisms. We previously performed experiments where the initial population consisted either

of a single library or a mixture of different libraries [16]. In particular, in two experiments

using very different targets (a neutral polymer and a DNA loop) we co-selected all 24 libraries

together. Strikingly, while only 2 of the 24 libraries were built on germline-based scaffolds, the

final population of one experiment was dominated by antibodies built on one of the two germ-

line-based scaffolds, and the second by the other one. This suggests that germline scaffolds

may have an intrinsically higher selective potential.

To investigate this hypothesis, we performed the selection against 4 different targets of 3

libraries built on scaffolds with varying degrees of maturation. The 3 single-domain VH librar-

ies are based on V genes from the heavy chain of 3 human antibodies that have evolved to

different degrees as part of the immune response to HIV (S1 Fig). They bear identically ran-

domized CDR3 at 4 sites (upstream of a common human framework FWR4 region JH4 and

no light chain). The Lim and Bnab scaffolds are derived from antibodies isolated from patients

(6-187 and PGT128) [19, 20] and have respectively limited and broad spectrum of neutraliza-

tion of HIV strains [15, 21]. Previous studies [15] concluded that the heavy chain V genes of

these antibodies result from distinct affinity maturation trajectoires originating from a com-

mon germline origin (IGHV4-39) on which our Germ scaffold is based. Our Germ scaffold

has thus not undergone any maturation. The Lim scaffold differs from Germ, from which it

originates, by 14% of its amino acids. The Bnab scaffold also originates from Germ, to which it

differs by 34% of its amino acids, and has evolved independently of Lim, to which it differs by

38%; the CDR2 of the Bnab scaffold also includes an insertion of 6 amino acids. The 3 single-

domain VH libraries, which are built around these VH scaffolds by introducing all combina-

tions of amino acids at 4 positions of their CDR3, were part of the 24 libraries used in our

previous experiments [16]. Here, to systematically compare the selective potential of these

libraries, we present experiments where they are selected against four different targets, two

DNA targets (DNA hairpins with a common stem but different loops, denoted DNA1 and

DNA2, S2 Fig) and two structurally related protein targets (the fluorescent proteins eGFP and

mCherry, denoted prot1 and prot2), each unrelated to the HIV virus against which the Lim

and Bnab scaffolds had been maturated.

Results

The distributions of top enrichments obtained from selecting jointly the three libraries against

each of the four targets are shown in Fig 1. One result is immediately apparent: top enrich-

ments from the Germ library are spread over a larger range of values than top enrichments

from the other libraries, irrespectively of the target. This suggests that Germ libraries have a

larger selective potential than their maturated counterparts. To justify the threshold above

which enrichments are displayed in Fig 1, quantify the spread, and show that differences are

also present between the Lim and Bnab libraries, we introduce and apply a simple model
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where the top enrichments are fitted to the tail of a lognormal distribution. We also report

additional analyses to show how sequences with top enrichments differ from one experiment

to the next.

Parametrization

To quantitatively compare the outcome of different experiments with different libraries and

targets, we introduce here two parameters, σ and μ, which respectively quantify intra and

Fig 1. Fitting empirical distributions of top enrichments with log-normal distributions. The Germ, Lim and Bnab libraries were jointly

selected against 4 targets. The top enrichments are fitted for each library independently to the tail of a log-normal distribution (black curve).

The quality of the fits is validated by probability-probability and quantile-quantile plots (S16–S18 Figs). Data for the Lim library against the

DNA1 target is not available as sequences from these libraries were too few at the rounds 2 and 3 of selection at which the enrichments are

measured. The σ (but not the μ) of the log-normal was obtained for this case by selecting the library in isolation (S8 Fig). The value of σ
quantifies the observation that top enrichments from the Germ library are spread over a larger range of values than top enrichments from the

Bnab library, irrespectively of the target. The Lim library displays an intermediate behavior (S1 Table).

https://doi.org/10.1371/journal.pcbi.1008751.g001
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inter-library differences in enrichments. These parameters derive from a statistical approach

that considers only the distribution P(s) of values that enrichments take across the different

sequences of a library [22–24]. They correspond to the assumption that this distribution is log-

normal,

PðsÞ ¼
1
ffiffiffiffiffiffi
2p
p

ss
exp �

ðln s � mÞ2

2s2

� �

: ð1Þ

The parameter σ captures intra-library differences in response to selection while the parameter

μ provides the additional information required to describe inter-library differences.

The parametrization of the distributions of enrichments by log-normal distributions has

several motivations. First, it empirically provides a good fit of the data, not only in our experi-

ments as we show below, but in a number of previous studies of antibody-antigen interactions

[25] and protein-DNA interactions [26], including studies that had access to the complete dis-

tribution P(s) [26]. Second, log-normal distributions are stable upon iteration of the selective

process: if two successive selections are performed so that s = s1 s2 with s1 and s2 independently

described by log-normal distributions, then s also follows a log-normal distribution; more gen-

erally, log-normal distributions are attractors of evolutionary dynamics [27]. Third, log-nor-

mal distributions are physically justified from the simplest model of interaction, an additive

model where the interaction energy between sequence x = (x1, . . ., xℓ) of length ℓ and its target

takes the form bDGðxÞ ¼
P‘

i¼1
hiðxiÞ with contributions hi(xi) from each position i and amino

acid xi, and thus its enrichment is s(x)’ e−βΔG(x), where T is the temperature and kB the Boltz-

mann constant (S1 Text 1.1). At thermal equilibrium and for sufficiently large ℓ, a log-normal

distribution of the affinities is then expected with μ� −ℓhhi and σ� ℓ1/2(hh2i − hhi2)1/2, where

hhi and hh2i − hhi2 are respectively the mean and variance of the values of binding energies

per position hi(xi). This additive model, which ignores epistasis between the sites i is not

expected to be exact but can provide a first approximation of the data (S1 Text 3.3). The central

limit theorem, on which the above argument is based, in fact remains valid in presence of

weak epistasis. We also note that the model does not exclude epistasis between the sites i and

the scaffold, which will be shown to be essential. The parameter σ, which quantifies the diver-

sity of enrichment values within a library, also corresponds to a natural measure of diversity

from the standpoint of information theory (S1 Text 1.3). These multiple empirical and theoret-

ical justifications motivate a description of the distributions of enrichments from selections of

antibody libraries by log-normal distributions. We show below that our data does not exclude

descriptions by other distributions, from which the same main conclusions can be drawn.

Inference of parameters

The enrichment s(x) of a sequence x is obtained from comparing the frequency of x in the pop-

ulation before and after a round of selection. As only the largest enrichments are expected to

reflect specific binding to the target, we obtain the parameters σ and μ by fitting the values with

truncated log-normal distributions, when s(x) exceeds a threshold s� (Fig 1A and Methods).

The threshold s� is chosen so that larger thresholds s�� > s� yield comparable values of σ and μ,

with the exclusion of very large thresholds s�� that leave too few data-points to make a sensible

inference S26, S27 and S28 Figs for an illustration with simulated data). A complication is that

enrichments are defined only up to a multiplicative factor (see Box). While the parameter σ is

independent of this multiplicative factor, comparing the parameters μ between libraries

requires performing selections where different libraries are mixed in the initial population.

The values of σ and μ that we infer for the 3 libraries Germ, Lim and Bnab when selected

against each of the 4 targets DNA1, DNA2, prot1 and prot2 are presented in Fig 2A. We
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validated the quality of the fits by probability-probability and quantile-quantile plots (S16–S22

Figs), and by comparing experiments where a library is selected either alone or in mixture

with the other two (S1 Table, S19 Fig). We verified that the results are unchanged whether

enrichments are measured by comparing frequencies between the 2nd and 3rd cycles, or

between the 3rd and 4th cycles (S1 Table and S20 and S21 Figs). Finally, we also performed

selection experiments where we mixed a very small number of random and top enrichment

sequences, which allows for a very precise estimation of the relative enrichments (S12, S13 and

S25 Figs). These experiments verify that sequences identified to have top enrichments are sig-

nificantly more enriched than random sequences when σ is large, as in the case of the Germ

library, but not when σ is small, as in the case of the Bnab library. The Lim library shows an

intermediate behavior consistent with its intermediate value of σ.

Intra-library hierarchy

The hierarchy of enrichments within a library is quantified by the parameter σ: a small σ indi-

cates that all sequences in the library are equally selected while a large σ indicates that the

response to selection varies widely between sequences in the library. When comparing the σL,T

inferred from the selections of the 3 libraries L against each of the 4 targets T, a remarkable

Fig 2. Comparing selections of libraries built on scaffolds with different degrees of maturation. A. Parameters (μ, σ) of the distributions of

enrichments for our 3 libraries selected against 4 targets. The color of the symbols indicates the library (Germ, Lim or Bnab) and its shape the target

(DNA1, DNA2, prot1 or prot2) with the conventions defined in B. Symbols with a black or no contour indicate results from replicate experiments

where the 3 libraries are mixed in the initial population. μGerm,T is conventionally set to μGerm,T = 0 for all targets T (Methods). μ is generally more

challenging to infer than σ and it shows here more variations across replicate experiments. B. Sequence logos for ~siðaÞ, which represent the contribution

of the different amino acids to the enrichments (see Box), for the selections of the three libraries, Germ, Lim and Bnab against the two DNA targets

(DNA1 and DNA2) and the two protein targets (prot1 and prot2). These results correspond to the experiments of Fig 1 where the 3 libraries are mixed

in the initial population. The Lim library is outcompeted by the other two libraries when selected against the DNA1 target, which does not leave enough

sequences to make a meaningful inference (see also S10 Fig for more details on the sequence logos for the Bnab library). C. Sequence logos for ~siðaÞ for

the Germ and Lim libraries selected in isolation against the DNA1 target. For the Lim library, this palliates the absence of data in B. For the Germ

library, it shows that the same motif with x1 = R, x3 = R or K and x4 = H dominates whether the library is selected in a mixture as in B or on its own; the

area under the logos is, however, different: it would be σ2/2 with infinite sampling, but major deviations are caused by limited sampling (S9 Fig).

https://doi.org/10.1371/journal.pcbi.1008751.g002
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pattern emerges: the more a scaffold is maturated, the smaller is σ, σGerm,T> σLim,T� σBnab,T

for all targets T, and even minT(σGerm,T)> maxT(σLim,T, σBnab,T) (Fig 2A). Statistically, if con-

sidering the inequalities to be strict, the experiments to be independent and any result to be a
priori equally likely, the probability of this finding is only p = (3!)−4’ 7.10−4.

Although selections of the Germ library are characterized by a similarly high value of σ for

the 4 targets, the sequences that are selected against each target are different. This is illustrated

through sequence logos (Fig 2B and 2C). These sequence logos do not fully capture the specific-

ity against each target, as they ignore any epistasis between the sites, but observing that they are

different is sufficient to conclude that selection is target-specific. The amino acids found to be

enriched are consistent with the nature of the targets: selections against the DNA targets are

dominated by positively charged amino acids (letters in blue) and selections against the two pro-

tein targets, which are closely structurally related, are dominated by similar amino acid motifs.

In contrast, sequences logos for the Bnab library show motifs that are less dependent on the

target (Fig 2B and S10 Fig). This observation is rationalized by an experiment where only the

amplification step is performed, in the absence of any selection for binding. Sequence-specific

amplification biases are then revealed, with sequence motifs that are similar to those observed

when selection for binding is present (S10 Fig). With protein targets at least, the motifs are

nevertheless sufficiently different to infer that selection for binding to the target contributes

significantly to the enrichments (see also S6 Fig). Target-specific selection for binding, which

is dominating the top enrichments in the Germ library (S11 Fig), is thus of the same order of

magnitude as amplification biases for the top enrichments in the Bnab library.

Remarkably, the Lim library behaves either like the Germ library or the BnAb library,

depending on the target. In particular, a motif of positively charged amino acids emerges when

selecting it against one of the two DNA targets (DNA1), but no clear motif emerges when

selecting it against the other one (DNA2) (Fig 2B). Besides, when a clear motif emerges, it can

be identical to the motif emerging from the Germ library as in case of a selection against the

prot2 target (Fig 2B), or different, as in the case of a selection against the DNA1 target (but

with a similar selection of positively charged amino acids) (Fig 2C).

Inter-library hierarchy

The hierarchy of enrichments between libraries is quantified by the parameter μ. This parame-

ter also shows a pattern that is independent of the target: μGerm,T’ μLim,T< μBnab,T and even

maxT (μGerm,T, μLim,T)<minT (μBnab,T) (Fig 2A). Inferring μ is more challenging than inferring

σ and the differences observed between the Germ and Lim libraries are most likely not signifi-

cant, as apparent from the observed variations between replicate experiments. The μ of the

Bnab library is, on the other hand, systematically larger. The difference is explained by an

experiment where selection is performed in the absence of DNA or protein targets but in the

presence of streptavidin-coated magnetic beads to which these targets are usually attached.

This experiment reproduces the differences in μL,T, which indicates a small but significant

affinity of the Bnab scaffold for the magnetic beads, independent of the sequence x (S12 Fig).

While the differences in σ appear to be independent of the target, the differences in μ are thus

related to a common feature of the targets. Given these different origins, the correlation

between σ and μ that we observe may be fortuitous.

Implications for evolutionary dynamics

The different patterns of intra- and inter-library hierarchies lead to non-trivial evolutionary

dynamics when selecting from an initial population that is composed of different libraries. In

particular, a non-monotonic enrichment is expected when mixing two libraries characterized
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by (μ1, σ1) and (μ2, σ2) with μ1 > μ2 but σ1 < σ2: the library with largest μ dominates the first

cycles while the one with largest σ dominates the later ones. This is indeed observed in experi-

ments where different libraries are mixed in the initial population (Fig 3). The dynamics of the

relative frequencies of different libraries are globally predicted by a calculation of library fre-

quencies in the mix based on the parameters (μL, σL) inferred for each library L independently

(S1 Text). We verify that the short-term dynamics are dominated by the library with largest μ
while the long-term dynamics are dominated with the library with largest σ: which of the two

parameters is most important thus depends on the considered time scale. The predictions

reported in Fig 3 are based on two assumptions: (i) the distributions of enrichments in differ-

ent libraries L are log-normal; (ii) the sequences in the initial population have equal frequen-

cies. This second hypothesis is only an approximation for our experiments, which limits the

validity of the predictions. Nevertheless, the results illustrate how parametrizing the response

to selection of a library by the two parameters (μ,σ) is not only useful to characterize its intrin-

sic response but also to rationalize the evolutionary dynamics of mixtures of libraries.

Additional data

Beyond the 3 libraries analyzed so far, our conclusions are supported by re-analyzing our pre-

vious results [16]. These previous results involved a library based on another germline scaffold,

19 libraries built on other maturated scaffolds, and a completely different target, in addition to

some of the same frameworks and targets presented in this work. Inferring σ from these data,

we observe again that libraries built around germline scaffolds have larger σ than libraries

built around maturated scaffolds (Fig 4 and S1 Table). These supplementary results corrobo-

rate the hypothesis that our measure of selective potential σ decreases in the course of affinity

maturation.

Discussion

The log-normal model provides a simple quantitative description of the data. As we discuss

here, other statistical models may be considered that lead to similar conclusions. More elabo-

rate analyses may also be performed, which go beyond the limitations of the present approach.

An alternative to the log-normal model: Extreme value statistics

In our previous work [16], we fitted the tail of the distribution of enrichments with generalized

Pareto distributions, a family of distributions with two parameters, a shape parameter κ and a

Fig 3. Dynamics of library frequencies. A mixture of the three libraries, Germ (blue), Lim (green) and Bnab (red) was subject to four

successive cycles of selection and amplification against different targets. The full lines report the evolution of the relative frequencies

of the three scaffolds. The dotted lines represent the estimated dynamics using the characterization of each library by a log-normal

distribution with the parameters σ, μ estimated from the selection of the libraries against the same target (S1 Text 1.5). The shaded

area correspond to one standard deviation in the estimation of the parameters σ, μ. The fit is only qualitative as we assume here that

sequences are uniformly represented in each initial library, which is not the case in experiments. The trends, which are controlled by

the two parameters σ and μ, are nevertheless well reproduced.

https://doi.org/10.1371/journal.pcbi.1008751.g003
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scaling parameter τ. This was motivated by extreme value theory, which establishes that these

parameters are sufficient to describe the tail of any distribution (S1 Text 1.2). For different

libraries L and different targets T, we found that generalized Pareto distributions provide a

good fit of the upper tail of PL,T(s), with, depending on the scaffold L and target T, either κ> 0

(heavy tail), κ< 0 (bounded tail) or κ = 0 (exponential tail). The origin of these different values

of κ was, however, unclear.

Comparing probability-probability plots to assess the quality of the fits, our data appears

equally well fitted by generalized Pareto distributions and log-normal distributions (S16–

S22 Figs). This finding is at first sight puzzling as some of the fits with generalized Pareto

distributions involve a non-zero shape parameter κ 6¼ 0 but extreme value theory states that

the tail of log-normal distributions is asymptotically described by a shape parameter κ = 0

for all values of σ, μ [28]. Extreme value theory is, however, only valid in the double asymp-

totic limit N!1 and s� !1, where N is the total number of samples and s� the threshold

above which these samples are considered. With finite data, determining whether this

asymptotic regime is reached is notoriously difficult when the underlying distribution is

log-normal [29]. More precisely, N points randomly sampled from a log-normal distribu-

tion with parameter σ are known to display an apparent κN = σ/(2 ln N)1/2 which tends to

zero only very slowly with increasing values of N [29]. In fact, this relationship itself requires

N (or σ) to be sufficiently large and finite size effects can even produce an apparent κN< 0

(S14 Fig).

While casting doubt on the practical applicability of extreme value theory, these statistical

effects do not call into question the main conclusion of our previous work [16]: different com-

binations of scaffolds L and targets T exhibit different within-library hierarchies, which are

quantified by the different values of their (apparent) shape parameter κ. Fits with a log-normal

distribution provide another parameter σ that report essentially the same differences (Fig 4).

More importantly, we verify on our previous data, which partly involves different scaffolds

and different targets, that libraries built on germline scaffolds have a higher σ than libraries

built around maturated scaffolds (Fig 4 and S1 Table).

Fig 4. Shape parameter κ from fits of the enrichments to generalized Pareto distributions versus σ from fits to log-

normal distributions. Results from different libraries selected against different targets are represented here with the

same convention as in Fig 2: blue, green and red plain colors for the Germ, Lim and Bnab libraries, circle, cross,

downward and upward triangles for the DNA1, DNA2, prot1 and prot2 targets. In addition, results from our previous

work [16] are indicated in transparent blue if they involve a library built onto a germline scaffold and in transparent

green if they involve a library built onto a maturated scaffold. The hierarchy indicated by κ is essentially the same as the

hierarchy indicated by σ, consistent with the expected relationship between κ and σ (black dotted line, S14 Fig). By the

two approaches, libraries built onto germline scaffolds are found to have a more diverse response to selection than

libraries built onto maturated scaffolds irrespectively of the target (all values of σ and κ are given in S1 Table).

https://doi.org/10.1371/journal.pcbi.1008751.g004
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Beyond the log-normal model

The log-normal model makes several assumptions that are only approximatively valid. First,

it assumes that the measured enrichments faithfully reflect the probability for a sequence to

be selected, which is exact only in the limit of infinitely large populations of selected and

sequenced antibodies. Second, it assumes that this probability reflects equilibrium binding to

the target through a simple non-epistatic relation between sequence and free energy of the

type x 7! sðxÞ ¼ e�
P

i
hiðxiÞ with negligible contributions from other factors when considering

the most enriched antibodies. Our populations of selected antibodies are large (� 1012) relative

to the number of different sequences (� 105) but the chance for a phage to be randomly

selected is of order 10−6 and our sequencing depth is of order 105, which induce stochastic

effects. Following previous works [30, 31], we can account for the sampling noise due to

sequencing by introducing a stochastic model for the observed numbers of sequences. We can

also consider deviations from the simplest model x 7! s(x) and account for other factors that

may contribute to the enrichments, as non-specific binding. An analysis along those lines

show how the selective potential of a library against a target can be more finely analyzed (S1

Text 1.5 and S23 Fig). This approach may be pushed further to account systematically for the

different factors that contribute to the selection of antibodies in phage display experiments.

Such an analysis may profitably replace the introduction of cut-offs to define top enrichments

that reflect specific binding and allow for a joint treatment of all consecutive cycles of selection.

It should also allow for better predictions of the fate of populations over multiple cycles of

selection. The simplified analysis presented here is sufficient, however, for reporting differ-

ences in selective potentials between libraries (Fig 2) and for qualitatively reproducing the

non-monotonic evolution of mixed libraries (Fig 4).

Conclusion

In summary, we propose the hypothesis that naïve antibodies which are constructed from

germline genes are endowed with a special evolutionary ability to generate selectable diversity,

which they lose when undergoing affinity maturation. To study this hypothesis, we introduced

an experimental and statistical approach that quantifies the selective potential of antibody scaf-

folds. In this approach, the response to selection of an antibody library against a given target is

summarized by two parameters, σ and μ, which have different interpretations and implica-

tions. The parameter σ describes the variability of the responses between sequences in the

library, while μ describes their common response. These two parameters may be viewed as

quantifying the selective potential of a library over different time scales: when competing two

libraries, the library with largest μ is initially more enriched but in the long-run sequences

from the library with largest σ eventually dominate.

Applying this approach to data from our high-throughput selection experiments, we find

results in favor of the hypothesis that germline-based antibody scaffolds have a higher potential

to generate selectable diversity, corresponding to a higher σ. In particular, we analyzed new

data centered onto 3 libraries, one built on a germline-based scaffold and two built on scaffolds

derived from this germline-based scaffold with different degrees of maturation, which we

selected against 4 different targets, all unrelated to the target against which the scaffold was

originally maturated. We find that σ decreases with the degree of maturation. Our hypothesis

is also corroborated by a re-analysis of our previous results, which involved a library built

on another germline-based scaffold, 19 libraries built on other maturated scaffolds, and a

completely different target [16]. Further experiments with additional scaffolds and targets

are needed to assess the generality of these results and the limitations of our statistical descrip-

tion by means of only two parameters. The present work provides the motivation and the
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methodology to generate and analyze such data and study alternative scenarios. We also stress

that our analysis is generally applicable to antibody library screening beyond testing our

hypothesis, in particular to compare quantitatively in a single plot, as in Fig 2A, the outcome

of many selection experiments involving several libraries and/or several targets.

Quantifying the selective potential of an antibody scaffold is a first step towards designing

libraries with optimized selectable diversity. Once the property of a biomolecule is measur-

able, one can indeed resort to directed evolution to attempt to optimize it. Here, the starting

point would be a population comprising different libraries with different scaffolds but identi-

cal random variations. We previously competed for binding to a target 24 such libraries [16],

a number that could be increased. By alternating such selections with the introduction of new

mutations in the scaffolds, one may be able to evolve scaffolds with increased μ and/or σ.

Which physical mechanisms may underly the differences in selective potential that we

observe? A number of studies, ranging from structural biology to molecular dynamics simula-

tions, have reported changes in antibody flexibility and target specificity over the course of

affinity maturation [32–39]. The emerging picture is that naïve antibodies are flexible and

polyspecific and become more rigid and more specific as they undergo affinity maturation. An

increase of structural rigidity in the course of evolution is also found in proteins unrelated to

antibodies [40]. Germline scaffolds may thus be more flexible than maturated scaffolds. If this

scenario is correct, how this structural flexibility translates into evolutionary diversity once dif-

ferent complementary determining regions (CDRs) are grafted onto the scaffolds remains to

be explained. Another biophysical property is also known to correlate with evolvability, ther-

mal stability [9, 10]. The loss of selective potential that we observe may thus derive from a loss

of thermal stability [41, 42]. Destabilization during affinity maturation might for instance arise

from the interaction between the heavy and light chains of antibodies: germline heavy chains,

which have to be robust to various light chain pairings, may be more stable than maturated

heavy chain whose stability may depend on their associated light chain. Our results may thus

be tied to the fact that we are studying heavy chains in isolation. Additional studies are needed

to test this and other hypotheses and to identify the mechanisms behind the differences of

selective potential that we measure.

Irrespective of mechanisms, our hypothesis and methodology may find applications beyond

antibodies, to understand more generally what controls the selective potential of biomolecules.

Beyond selection, a next step is to extend this work to quantify evolvability, i.e., the response to

successive cycles of selection and mutations. Yet, being able to quantify the selective potential

of a scaffold by an index that is systematically reduced in the course of evolution already raises

an interesting challenge: can we increase this index to design libraries with better response to

selection?

BOX—Principles of antibody selection experiments

We perform phage display experiments with different libraries of antibodies as input

and different molecular targets (DNA hairpins or proteins) as selective pressures [17].

Our antibodies are single domains from the variable part of the heavy chain (VH) of nat-

ural antibodies. Antibodies in a library share a common scaffold of’ 100 amino acids

and differ only at four consecutive sites of their third complementary determining

region (CDR3), which is known to be important for binding affinity and specificity. A

library comprises all combinations of amino acids at these four sites and therefore con-

sists of a total of N = 204’ 105 distinct sequences x = (x1, x2, x3, x4). Initial populations

include a total of 1011 sequences, corresponding to� 106 copies of each of the distinct�
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Fig 5. A Scheme of the experiment. B Sequence logos from selections of the Germ library against the DNA1 target.

https://doi.org/10.1371/journal.pcbi.1008751.g005

105 sequences when a single library is considered. Physically, these populations are made

of phages, each presenting at its surface one antibody and containing the corresponding

sequence.

An experiment consists in a succession of cycles, each composed of two steps (Fig 5A).

In the first step, the phages are in solution with the targets, which are attached to mag-

netic beads and in excess relative to the phages to limit competitive binding (see S1 Text

1.1). The beads are retrieved with a magnet and washed to retain the bound antibodies.

In the second step, the selected phages are put in presence of bacteria which they infect

to make new phages, thus amplifying retained sequences. A population of� 1011 phages

is thus reconstituted. Both the selection for binding to the target and the amplification

can possibly depend on the sequence of the antibody.

We define the enrichment s(x) of sequence x to be proportional to the probability for

sequence x to pass one cycle. As the targets are in excess relative to the antibodies,

enrichments are independent of the cycle c (see S1 Text 1.1). In the limit of infinite pop-

ulation sizes, s(x) is proportional to the ratio fc(x)/fc−1(x) of the frequencies fc(x) after any

two successive cycles c − 1 and c. To estimate these enrichments, about 106 sequences

are sampled before and after a cycle and read by high-throughput sequencing. Given the

counts nc−1(x) and nc(x) of sequence x before and after cycle c, we estimate the enrich-

ment of x as

sðxÞ ¼ a� 1
c

ncðxÞ
nc� 1ðxÞ

ð2Þ

where αc is an arbitrary multiplicative factor.

In practice, two types of noise must be taken into account when applying Eq (2): an exper-

imental noise, which implies that antibodies have a finite probability to pass a round of

selection independently of their sequence, and a sampling noise, which arises from the

limited number of sequence reads. This sampling noise is negligible if nc−1(x) and nc(x)

are sufficiently large. This is generally not the case for any sequence at the first cycle c = 1
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Methods

Experimental methods are as in our previous work [16], except for target immobilization and

sequencing data analysis as summarized in S1 Text. Here we present the methods of data anal-

ysis. Further theoretical background and additional statistical analyses are presented in S1

Text, and Python codes are provided in S1 Code.

Noise cleaning with a threshold

Enrichments are computed from sequencing counts as indicated in Eq (2) in the Box. To

account for sampling noise, only sequences whose count is� 10 both at round c and c + 1 are

considered. Moreover, we ignore enrichments s(x) below a threshold s?, which arise from

unspecific binding. Unspecific binding modifies the expression for the enrichment of sequence

x to include a sequence-independent unspecific binding energy ΔGus,

sðxÞ ¼
e� bDGðxÞ þ e� bDGus

1þ e� bDGðxÞ þ e� bDGus
: ð3Þ

It sets a lower bound for the enrichment given by

sus ¼
e� bDGus

1þ e� bDGus
¼

1

1þ ebDGus
: ð4Þ

The argument for log-normality of enrichment distributions applies only when the specific

where all N = 204 sequences are present in too small numbers but becomes the case at the

third cycle c = 3 for the 100 to 1000 sequences with largest enrichments. We therefore

compute s(x) between the second and third cycles as sðxÞ ¼ a� 1
3
n3ðxÞ=n2ðxÞ by restricting

to sequences x that satisfy n2(x)� 10 and n3(x)� 10. Additionally, as only the top

enrichments reflect binding affinity, we retain only the sequences with s(x) > s� where

s� is determined self-consistently (Methods and S3 Fig). Enrichments s(x) obtained by

this procedure generally depend on the library (scaffold) L and the target T but are

reproducible between independent experiments using the same library and the same

target (S4 Fig).

To visualize the sequence dependence of enrichments, we use sequence logos [43]. In

this representation, for each position i along the sequence, a bar of total height
P

a f
c
i ðaÞ ln ½20f ci ðaÞ� is divided into letters, where each letter represents one of the 20

amino acids a with a size proportional to f ci ðaÞ, the frequency of a at position i in the

population after cycle c; for instance, f c
2
ðaÞ ¼

P20

x1¼1

P20

x3¼1

P20

x4¼1
f cðx1; a; x3; x4Þ; finally,

the letters are colored by chemical properties: polar in green, neutral in purple, basic in

blue, acidic in red and hydrophobic in black. It illustrates how some motifs are progres-

sively enriched over successions of selective cycles. This representation is, however,

dependent on the frequencies f 0(x) of sequences in the initial population. To eliminate

this dependency, we define an effective frequency ~siðaÞ per position i and amino acid a
as ~siðaÞ ¼

P
xsðxÞdðxi; aÞ=

P
xsðxÞ, which would correspond to the frequency of a at

position i after one round of selection if all sequences x were uniformly distributed in the

initial population. It can also be represented by a sequence logo but depends only on

s(x), as illustrated in Fig 5B by the Germ library selected against the DNA1 target (see

S5–S7 Figs for other cases).
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binding contribution ΔG(x) dominates the enrichment. We therefore eliminate the enrich-

ments dominated by unspecific binding.

This is done by introducing a cut-off s�. The choice is made such that (i) the values of the

inferred parameters ŝ and m̂ are approximately constant for all s� s� and (ii) s� is large enough

to eliminate enrichments due to unspecific binding. Condition (i) is implemented by compar-

ing ŝ and m̂ for many choices of s�, while condition (ii) is implemented by plotting the counts

n2(x) and n3(x) at the two successive cycles, as illustrated in S3 Fig (see also S24 Fig): sequences

with s = sus appear in the diagonal with a variance that decreases with increasing counts, as

expected from sampling noise, and s� is chosen so as to exclude these sequences. Both criteria

are usually simultaneously satisfied if the main source of deviations from lognormality is the

presence of more than one binding mode (S28 Fig). In cases where specific binding to the tar-

get is very strong, sequences selected for unspecific binding are not present (S15(A) Fig), while

in cases where specific binding is too weak, only sequences selected for unspecific binding are

present (S15(F) Fig).

The same criteria apply when fitting to generalized Pareto distributions to infer the parame-

ter κ but criterion (i) may lead to a higher value of s� if the measured enrichments extend

beyond the tail of the distribution. In our previous work [16], we only considered criterion (i).

In one case (Frog3 against DNA1), the s� that we define here by accounting for (ii) differs

from the s� that we had previously defined (S15 Fig), which leads to a significantly different

estimation of κ: k̂ ¼ � 0:53� 0:19 instead of k̂ ¼ 0:97� 0:38. In the other cases, we recover

essentially the same results. The new analysis provides, however, additional insights; in the

case of Frog3 against PVP, it thus appear that the vanishing value of κ can be attributed to the

enrichments being dominated by unspecific binding (S15 Fig).

Fit to log-normal distributions

To infer from experimental data the parameters σ and μ of a log-normal distribution, as given

by Eq (1) in the Box, we focus on the best available enrichments si> s�. In practice, it is more

convenient to work with the log of the enrichments, yi = ln(si), and to fit them with a normal

distribution. If restricting to values yi larger than a given threshold y�, the probability density

P(Y = y|Y� y�) of observing yi given that yi� y� is

PðY ¼ yjY � y�Þ ¼
PðY ¼ yÞ
P½Y � y��

¼

ffiffiffi
2

p

r
e�
ðy� mÞ2

2s2

s 1 � erf y�� mffiffi
2
p

s

� �h i ; ð5Þ

where erfðxÞ ¼ 2ffiffi
p
p

R x
0
e� x2dx is the Gauss error function. The log-likelihood Lðm; s; y�Þ then

verifies

�
1

N
Lðm; s; y�Þ ¼ �

1

N

XN

i¼1

ln PðY ¼ yijY � y�Þ

¼ lnðsÞ þ ln 1 � erf
y� � m
ffiffiffi
2
p

s

� �� �

þ
1

2s2N

XN

i¼1

ðyi � mÞ
2
;

ð6Þ

up to irrelevant additive constants independent of the parameters μ and σ. For a given y�, we

minimize this quantity with respect to the parameters σ and μ to obtain ŝðy�Þ and m̂ðy�Þ and

then chose y� such that for any y� y� both ŝðyÞ and m̂ðyÞ are nearly constant (criterion (i) in

previous section). Finally, we obtain a lower bound on the uncertainty of the parameter values

using the Fisher information matrix and the Cramér-Rao bound. To assess the quality of fit,
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we produce P-P plots comparing the cumulative distribution of data to

z ¼ Fðyjy�Þ ¼ P½Y � yjY � y�� ¼
erf y� mffiffi

2
p

s

� �
� erf y�� mffiffi

2
p

s

� �

1 � erf y�� mffiffi
2
p

s

� � ð7Þ

where z is the fraction of the data above y� y� according to the model, and Q-Q plots compar-

ing the data to the inverse distribution function y = F−1(z|y�).
What may be expected in presence of unspecific binding is illustrated in S28 Fig with simu-

lated data: consistent inferences of ŝðy�Þ and m̂ðy�Þ are obtained in an intermediate range of

thresholds, while divergences may arise outside this range.

Normalization of μ across libraries

The selection of a library L against a target T yields only the values of the highest enrichments

s(x) up to an unknown multiplicative constant α (see Box). The parameter σ = σL,T is indepen-

dent of α but not the parameter μ = μL,T. The relative values of μL,T for different libraries L
selected against the same target T are determined by performing selections where the different

libraries are mixed in the initial population: this leaves undetermined one overall multiplica-

tive constant per target which we fix by setting μGerm,T = 0 for each target T.

Supporting information

S1 Text. Supporting text with further description of the theoretical and experimental

methods.

(PDF)

S1 Table. Parameters obtained from fits of the distribution of enrichments to generalized

Pareto distributions (κ, τ) and log-normal distributions (σ, μ) for experiments presented

here and in our previous work [16]. N/A indicates that the data was insufficient to make a

meaningful fit. For enrichments against the protein targets between rounds c = 2 and c + 1 = 3,

values are given for two independent replica of the experiment. The given uncertainties corre-

spond to a single standard deviation around the maximum likelihood estimate as given by the

Cramér-Rao bound. In the case of Frog3 against DNA1, and only in this case, the value of κ
differs from the one reported in our previous work [16] for reasons explained in S15 Fig.

(TIF)

S1 Fig. Alignment of the sequences of the three scaffolds, Bnab, Lim and Germ. The 4 ran-

domized positions correspond to the part of the CDR3 indicated by XXXX.

(TIF)

S2 Fig. DNA1 and DNA2 binding targets. The targets display a hairpin structure at room

temperature. They share a common stem sequence but the sequence of their loop differ. A bio-

tin is placed at the 5’ ends to allow for immobilization on streptavidin-coated magnetic beads.

(TIF)

S3 Fig. Illustration of the choice of the cutoff s� below which measured enrichments are

attributed to unspecific selection. The number n3(x) of counts in the sequencing data at

round c = 3 is plotted against the number n2(x) of counts at round c − 1 = 2 for a selection of

the Bnab library mixed with the two other libraries against the DNA1 target. An accumulation

of sequences with similar enrichments is observed along the diagonal, with larger variance for

smaller values as expected from an increased sampling noise. This is interpreted as arising
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from unspecific selection, e.g., through unspecific binding, associated with an enrichment sus

independent of the sequence. We define a cut-off s� such that sequences x with s = n3(x)/n2(x)

� s� cannot be attributed to unspecific selection. In addition, we restrict to sequences x with

n2(x)� 10 and n3(x)� 10, as represented by the vertical and horizontal lines, to ensure that

the inferred enrichments are not dominated by sampling noise.

(TIF)

S4 Fig. Comparisons between results of replicate and non-replicate experiments. A. Com-

parison of the frequencies f3(x) = n3(x)/∑x0 n3(x0) computed after the third cycle (c = 3) between

two independent replicate experiments where a mixture of the Germ (in blue), Lim (in green)

and Bnab (in red) libraries is selected against the protein target prot1. Due to stochastic sam-

pling, some sequences x are well represented in one experiment (n3(x)� 10) but not in the

other; they are represented by the points along the two axes. As expected, the frequencies of

the most prevalent sequences are the most reproducible. B. As in A but for protein target

prot2. C. Comparing an experiment with prot1 as target with another with prot2 as target:

common sequences are enriched in the two cases, although with not exactly the same frequen-

cies. D. Comparing an experiment with prot1 as target with another with DNA1 as target,

showing that different sequences are enriched in each case. In particular, the most frequent

sequences when selecting against one target are absent in the third round when selecting

against the other (points along the axes). E,F,G,H. Comparison of enrichments s(x) calculated

from the frequencies between the second and third rounds as s(x) = λn3(x)/n2(x). Points along

the axes correspond to sequences for which the enrichment could be estimated only for one of

the two experiments. We verify that in cases E,F,G where the targets are similar the same top

enrichments are recovered (up to a multiplicative constant corresponding to a shift in log-log

plots). Beyond stochastic effects, reproducibility is mainly limited by the differences in the pro-

duction of the targets, as shown in S12 Fig.

(TIF)

S5 Fig. Extension of Fig 5 to the 3 libraries Germ, Lim, Bnab selected either in a mixture

(mix) or on their own (alone) against the DNA1 and DNA2 targets. The sequences logos

represent the frequencies f ci ðaÞ of amino acids at each successive cycle c = 0, 1, 2, 3, 4.

(TIF)

S6 Fig. Extension of Fig 5 to the 3 libraries Germ, Lim, Bnab selected in mixture against

the prot1 and prot2 targets. The sequences logos represent the frequencies f ci ðaÞ of amino

acids at each successive cycle c = 0, 1, 2, 3, 4. The data is presented at two different scales for

better readability.

(TIF)

S7 Fig. Sequence logos for the enrichments ~sðxÞ computed between two successive rounds

(1-2, 2-3 or 3-4). The differences between rounds reflect sampling fluctuations.

(TIF)

S8 Fig. Fitting distributions of top enrichments with log-normal distributions. Top: sepa-

rate selections of the Germ and Lim libraries against the DNA1 target. Here enrichments are

computed between rounds 1 and 2. Note that the μ cannot be compared and is fixed to μ = 0 in

both cases. These experiments complement those of Fig 1 where the libraries are selected

together, which does not leave sufficient data for the analysis of the Lim library against the

DNA1 target. Bottom: analyses of replicate experiments where the three libraries are jointly

selected against the two protein targets, as in the bottom panels of Fig 1.

(TIF)
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S9 Fig. How the estimation of the entropy is biased by finite sampling. 105 values were

drawn from a log-normal distribution with parameters μ = 0 and σ = 0.5 (green), 1 (red) and

1.5 (blue). The relative entropy D(P1kP0) was then estimated using a random subsample of size

N. For any N< 105, this leads to an overestimation of D(P1kP0) whose actual value σ2/2 (see

Eq. 14 in S1 Text) is represented by the horizontal lines at the bottom.

(TIF)

S10 Fig. Sequence logos for the enrichments ~siðaÞ of the Bnab library subject to either

amplification only or to amplification and selection for binding against the DNA1, DNA2,

prot1 or prot2 targets. The enrichments are computed between the first and second cycles (1-

2) or between the third and fourth cycles (3-4); for amplification only, the results of two repli-

cate experiments are shown. The sequence logos of enrichments calculated between rounds 2

and 3 are the same as those shown in Fig 2 (Bnab library), except for the scale along the y-axis.

All sequences logos share common patterns reflecting a common contribution from amplifica-

tion biases. Sequence logos against the protein targets show, however, an enrichment for tryp-

tophane (symbol W) that is not observed when selection involves amplification only. Selections

of the Bnab library thus have a target-dependent contribution from binding affinity of similar

order of magnitude as a common target-independent contribution from amplification biases.

(TIF)

S11 Fig. Contribution of amplification biases to the enrichments in selection against the

DNA1 target. A separate experiment without any selection for binding was performed to esti-

mate the difference of enrichments arising from the amplification step alone. A. The resulting

samplif is here compared to the enrichments stot from an experiment including a selection for

binding. The sequences with top stot, which all belong to the Germ library (in blue), are among

the sequences with lowest samplif, which indicate that they are selected for binding with no con-

tribution from the amplification bias. On the other hand, the sequences with top stot from the

Lim and Bnab libraries (respectively in green and red), have also top samplif, which indicate a

significant contribution from amplification biases. B. The ratio stot/samplif represents the contri-

bution to enrichment of binding alone. The two selective pressures, binding and amplification,

appear here to be orthogonal.

(TIF)

S12 Fig. Supplementary experiments with minimal libraries. A. Enrichments of top and

random sequences from the three libraries, Germ (in blue), Lim (in green) and Bnab (in red),

against DNA1. B. Results from a replicate experiment using a different stock of beads, showing

that the enrichments are reproduced except for the Bnab sequences (in red), which have a sys-

tematically higher enrichment. C. Similar to A, but when selecting for binding to the beads in

absence of the DNA1 target. The top enrichments are from the Bnab sequences (in red), indi-

cating that they bind to the beads, a finding consistent with the discrepancy between A and B.

Here, the differences in enrichments are also coming from differences of enrichment during

amplification (S11 Fig). Consistent with S11 Fig, the top Germ sequences (blue dots) have in

absence of the DNA1 target the worst enrichments.

(TIF)

S13 Fig. Cross selections with minimal libraries consisting of mixtures of top sequences

against the DNA1 target (full circles) and top sequences against the DNA2 target (full

crosses). A,C. Selection against the DNA1 target (same as in S12 Fig). B,D. Selection against

the DNA2 target. The results confirm that some sequences from the Germ and Lim libraries

bind specifically to the DNA1 target (blue dots and one of the green dots) and some sequences
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from the Germ library to the DNA2 target (blue crosses).

(TIF)

S14 Fig. Relation between the parameter σ from log-normal fits and the parameter κN
from generalized Pareto fits from numerical simulations. A. N = 104 values were drawn

from a log-normal distribution with parameters μ = 0 and varying σ (x-axis). The largest 25,

50, 75, 100% of these values (i.e., 75, 50, 25, 0% truncation) were fitted to a Pareto model with

parameters κ and τ. The plot shows the estimation k̂ as a function of σ. Averages and standard

deviations are taken over 25 independent realizations of the numerical experiment. It shows

that limited sampling may cause a k̂ < 0 to be inferred from values drawn from a log-normal

distribution when σ is small, here σ< 0.5. B. Inverse simulation: A truncated log-normal

model is fitted to the largest 25, 50, 75, 100% among 500 values (i.e., 75, 50, 25, 0% truncation)

drawn from a Pareto model with parameters τ = 0.115, s� = 0.001 and varying κ (x-axis). The

black dotted line in Fig 4 corresponds to the 25% truncation.

(TIF)

S15 Fig. Definition of the threshold s� above which enrichments s are considered for the

experimental results reported here (A) and in Ref. [16] (B-F). As in S3 Fig, the definition is

based on a comparison between counts at the 2nd and 3rd cycles. The horizontal and vertical

lines correspond to the criteria n2(x)� 10 and n3(x)� 10. The plain oblique line corresponds to

the definition of s� in this work. In the case of the selection of the Frog3 library against the

DNA1 target, it differs from the value of s� used in our previous work [16] (dotted oblique line)

which failed to discard many enrichments coming from unspecific binding. In the case of the

selection of the Frog3 library against the PVP target, all measured enrichments may be attributed

to unspecific binding and we are therefore not including the inferred values of σ and κ in Fig 4.

(TIF)

S16 Fig. Assessments of the qualities of the fits of the enrichments to generalized Pareto dis-

tributions (cyan) and to log-normal distributions (black) for selections of the Germ library.

The different graphs correspond to selections against different targets. For the protein targets

prot1 and prot2, results from two replicate experiments are presented. All enrichments are com-

puted by comparing the frequencies at the 2nd and 3rd cycle. The graphs on the right show the

P-P and Q-Q (inset) plots for each fit. Perfect fits would correspond to the red dotted lines.

(TIF)

S17 Fig. Same as S16 Fig but for the Lim library instead of the Germ library.

(TIF)

S18 Fig. Same as S16 Fig but for the Bnab library instead of the Germ library.

(TIF)

S19 Fig. Same as S16 Fig for the Germ library selected in isolation rather in a mixture with

the two other libraries.

(TIF)

S20 Fig. Same as S16 Fig but for enrichments computed from a comparison between the

3rd and 4th cycle instead of the 2nd and 3rd cycle.

(TIF)

S21 Fig. Same as S20 Fig (enrichments computed from a comparison between the 3rd and

4th cycle) but for the Bnab library instead of the Germ library.

(TIF)
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S22 Fig. Same as S20 Fig but for the experimental results reported in Ref. [16].

(TIF)

S23 Fig. Analysis of data from the Germ library selected against the DNA1 target (in Mix)

with the stochastic model presented in S1 Text, Sec 1.5. The data consists in the counts

n1(x), n2(x), n3(x) at the different rounds (panels C and F), from which enrichments are

inferred in different ways that we compare. As in the main text, we define s1- 2(x)/ n2(x)/n1(x)

when n1(x)� 10 and n2(x)� 10, and s2-3(x)/ n3(x)/n2(x) when n2(x)� 10 and n3(x)� 10:

they are shown in panel G to give consistent results (undefined values are represented as small

values). Alternatively, we can infer enrichments by maximum likelihood using the model in

section 1.5 of S1 Text. For each successive rounds c-(c + 1) with c = 1 or 2, two solutions are

considered: sc� ðcþ1Þ

0 ðxÞ where unspecific binding is neglected (ΔGus =1) and sc� ðcþ1Þ

1 ðxÞ where

it is not (ΔGus treated as variable in addition to the hi(a)). They are compared to sc-(c+1) in pan-

els A, B, D, E. In B and E, where unspecific binding is present, the sequences that are predicted

to be selected through specific binding (e� bGðxÞ > e� bGus Eq. 21 of S1 Text) are represented

in orange. When considering data between rounds 1- 2, a good agreement is found between

s1-2(x) and s1� 2
1
ðxÞ (panel B) and the sequences identified as binding specifically (in orange)

correspond indeed to those above a threshold, s1-2(x)> s�(panel C). This is not the case when

considering the data between rounds 2-3 where the model predicts many sequences with high

enrichments s2� 3
1
ðxÞ that are not reported in s2-3(x) (panel E). In this case, the solution without

non-specific binding s2� 3
0
ðxÞ appears to be more relevant. This is confirmed in panels H and I

where s1-2(x) is seen to correlate better with s2� 3
0
ðxÞ than with s2� 3

1
ðxÞ. Panel J represents the

maximum value of the log-likelihood for fixed values of ΔGus, showing the presence of a non-

trivial optimum (data from rounds 1-2). The fields hi(a) of this model are shown in panel K in

the zero-sum gauge where
Pq

a¼1
hiðaÞ ¼ 0 for all i. The same information can also be repre-

sented in the form a sequence logo (panel L), to be compared to the sequence logo obtained

from s(x) (Fig 2B, Germ-DNA1).

(TIF)

S24 Fig. Relative frequencies at round 1 (x-axis) and round 2 (y-axis) of sequences from

the 3 libraries, Germ (blue), Lim (green) and Bnab (red) when selected in mixture against

the DNA1 target. This figure shows that each library has a different background noise.

(TIF)

S25 Fig. Reproducibility of enrichments inferred from experiments with mini-libraries.

A. Enrichments from S13(A) Fig versus S13(C) Fig: the results from the two experiments

are highly reproducible except for the Bnab sequences in red. This difference is due to

the different batches of beads used in these two experiments. B. Enrichments from S13(B)

Fig versus S13(D) Fig. Here the two experiments use the same batch of beads and the

inferred enrichments are all very reproducible. C. Enrichments from S12(B) Fig versus S12

(A) Fig, showing again high reproducibility. Error bars are enlarged 20 times to make them

visible.

(TIF)

S26 Fig. Dependence of the inferred values of k̂, when fitting the tail of the distribution of

enrichments to a generalized Pareto distribution, and ŝ, when fitting them to a truncated

log-normal distribution, on the choice of the threshold s� or y� = ln(s�) that defines the tail.

Here for the Germ library selected against different targets. When the threshold is too large,

very few data points are left and the error bars, obtained from the Fisher information matrix

via the Cramér-Rao bound, are large. In any case, however, the estimation of k̂ and ŝ is
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consistent across a range of values of the thresholds.

(TIF)

S27 Fig. Similar to S26 Fig but for the Lim and Bnab libraries.

(TIF)

S28 Fig. Inference from simulated data, in analogy to S12 and S27 Figs. The 3 examples cor-

respond to different draws of N = 104 samples from a mixture model with two equiprobable

modes: a bottom (“unspecific”) mode described by a lognormal distribution with parameters

μus = −10 and σus = 1 and a top mode described by a lognormal distribution with parameters

μ = −9 and σ = 1. The parameters of this top mode are recovered for an intermediate range of

thresholds. For too small thresholds, the presence of the bottom mode leads to inconsistent

values while for too high thresholds the number of samples becomes insufficient.

(TIF)

S1 Code. Jupyter notebooks with code to reproduce our analysis.

(RAR)
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