
Supplementary information

R. G. Smock, O. Rivoire, W. P. Russ, J. F. Swain, S. Leibler, R. Ranganathan, and L. M. Gierasch



2

CONTENTS

I. Supplementary text 2
A. Framework for analyzing positional and sequence correlations 2
B. Correlations in the Hsp70/110 family 3
C. ICA calculations 4

Supplementary references 4

II. Supplementary table 5

III. Supplementary figures 6

I. SUPPLEMENTARY TEXT

The definition of an inter-domain sector in the Hsp70/110 family is based on the principles introduced in Refs. (1)
and (2). The alignment of this family does not, however, satisfy the condition of ”good sampling” of the sequences
required by the approach taken in Ref. (2). This supplementary note presents our approach to the problem raised
by this alignment. A more detailed and general description of the SCA approach to inferring protein sectors from
multiple sequence alignments will be reported elsewhere (O. Rivoire, S. Leibler and R. Ranganathan, in preparation).

A. Framework for analyzing positional and sequence correlations

As in previous work (2), we start from a binary approximation of the alignment, which is represented by a binary
array X with elements satisfying Xsi = 1 if the most frequent amino at position i is present in sequence s, and Xsi = 0
otherwise. X has size M ⇥ L, where M denotes the number of sequences in the alignment, and L the number of
positions. Correlations between conserved positions are measured by a SCA matrix C̃ with elements defined by1

C̃ij = �i�j (hXsiXsjis � hXsiishXsjis) , (1)

where h·is denotes an average over the M sequences of the alignment, and the weights �i are defined as in previous
work (1) by

�i = ln
fi(1� q(ai))

(1� fi)q(ai)
. (2)

�i quantifies the deviation of the frequency fi = hXsiis =
P

s Xsi/M of the prevalent amino acid ai at position i
from the expected frequency q(ai) of this amino acid; it is a positive and increasing function of fi when fi � q(ai) (a
condition that holds for all positions here). The SCA matrix of positional correlations can also be written

C̃ = X̃>X̃/M (3)

where the M ⇥ L matrix X̃ is defined by

X̃si = �i(Xsi � hXsiis), (4)

and where X̃> denotes the transpose of X̃. Correspondingly,

S̃ = X̃X̃>/L. (5)

defines a matrix of correlations between sequences. S̃st measures the similarity between two sequences s and t with
the contribution of each position weighted based on its conservation: di↵erences between sequences occurring at more

1 In (2), we used |C̃| instead of C̃. The di↵erence is, however, minor and for simplicity we do not take the absolute value.
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conserved positions are thus emphasized.

A relation between the eigenvectors of C̃ and those of S̃ is given by the singular value decomposition of X̃. This
decomposition always exists and has the form

X̃ = U⌃V >, (6)

where U and V are respectively L⇥L and M ⇥M orthogonal matrices, and ⌃ is a L⇥M diagonal matrix. From this
decomposition and Eqs. (3)-(5) it follows that C̃ = V DV > and S̃ = U�U>/L, where D = ⌃>⌃/M and � = ⌃⌃>/L
are both diagonal matrices: the columns of U thus correspond to the eigenvectors |U1i, |U2i, . . . of S̃ and those of V
to the eigenvectors |V1i, |V2i, . . . of C̃.

Following previous work (2), sectors are defined as linear combinations of the top eigenvectors |V1i, |V2i, . . . , |Vki
of C̃. Given that statistical independence in the alignment is a defining property of protein sectors, relevant lin-
ear combinations can be sought using independent component analysis (ICA), a method for recovering statistically
independent signals (see e.g. (3)). Starting from the top k eigenvectors |V1i, |V2i, . . . , |Vki of C̃, ICA calculates a

k ⇥ k unmixing matrix W p, defined so that the vectors |V p
1 i, |V

p
2 i, . . . , |V

p
k i obtained by |V p

n i =
Pk

m=1 W
p
nm|Vmi are

maximally independent2; details on the algorithm used in this study are presented in Sec. I.C.

If a sector is associated with |V p
1 i =

Pk
m=1 W

p
1m|Vmi, the same linear transformation W p applied to the eigenvec-

tors of S̃, namely |Up
1 i =

Pk
m=1 W

p
1m|Umi, indicates a direction in the sequence space along which the sequences are

classified based on di↵erences in these sector positions. Alternatively, we may also apply ICA to obtain an unmix-
ing matrix W s based on the top k eigenvectors of the matrix of sequence correlations S̃, instead of the matrix of
positional correlations C̃. In this case, we expect the rotated vectors |Us

ni to indicate subfamilies of sequences and
the corresponding vectors |V s

n i to point to positions that have distinct patterns of amino acids in these subfamilies.
We refer here to these two complementary ways of analyzing X̃ as ”sequence ICA” (seqICA) and ”positional ICA”
(posICA).

B. Correlations in the Hsp70/110 family

Inspection of the spectrum of C̃ for the Hsp70 alignment indicates that 4 eigenvalues clearly stand out (Fig. S1).
A projection of the sequences along the top 2 eigenvectors |U1i and |U2i of S̃ reveals a structured distribution of
the sequences with mainly 4 subfamilies of sequences3 (Fig. S2). |U3i reinforces this conclusion by making more
apparent the distinction between the cyan and white subfamilies, while |U4i displays subgroups of sequences within
the white subfamily (Fig. S2). ICA applied to the vectors |U1i, |U2i, |U3i leads to an unmixing matrix W s, which
maps |U1i, |U2i, |U3i to new vectors |Us

1 i, |Us
2 i, |Us

3 i (seqICA). These maximally independent directions can be used
to define subfamily of sequences. Thus, we colored here the sequences in purple, white, cyan or orange based on Fig. S3.

The 4 subfamilies can be interpreted from the available annotations of the sequences: the white and cyan subfam-
ilies correspond to the two subclasses of Hsp70 proteins known as DnaK and HscA. The orange subfamily is found
to comprise chaperones from several other classes of Hsp70 proteins and the purple subfamily proteins that are non-
allosteric, including proteins from the Hsp110 family. More subdivisions are found along the following eigenvectors
of S̃ which can also be interpreted in terms of functional subfamilies (sequences from particular orthologous families
of proteins) and phylogenic subfamilies (sequences from particular clades). The subdivisions displayed by |U4i thus
correspond to subgroups of DnaK sequences from di↵erent clades of bacteria.

The non-allosteric nature of the purple sequences found along |Us
1 i suggests that when the same unmixing matrix

W s is applied to the eigenvectors |V1i, . . . |V3i of C̃, the resulting vector |V s
1 i should point to correlated positions

involved in the allosteric interaction between the two domains, i.e., to positions consistently conserved in all Hsp70

2 Note that ICA does not prescribe an order between the vectors |V p
n i, in contrast with principal component analysis (PCA) which orders

the eigenvectors |Vni in descending value of their associated eigenvalues.
3 Note that in presence of a structured distribution of sequences, the first eigenvector of S̃, |U1i, may be associated with a particular
subfamily rather than with a ”global phylogenetic trend”; in such a case, it should not be subtracted as done in (2).
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proteins except for the purple sequences. The vectors |V s
1 i, |V s

2 i, |V s
3 i are represented in Fig. S4 and are the basis for

the definition of the allosteric sector (see also Fig. S5). Consistently, the same sector can be identified by posICA,
i.e., ICA based on the eigenvectors |V1i, . . . , |V3i of C̃. This leads to an unmixing matrix W p and transformed vectors
|V p

1 i, . . . , |V
p
3 i displayed in Fig. S6 (both the order and the sign of |Us

1 i, . . . , |Us
3 i and |V p

1 i, . . . , |V
p
3 i are arbitrary and

were chosen here to facilitate the comparison between the various figures). Note that the equivalence between the
results of seqICA and posICA regarding |V s

1 i and |V p
1 i may not hold for other protein families.

The use of the binary approximation of the MSA is a necessary simplification of the MSA for usage of the sin-
gular value decomposition method described in this work. Generalization to consider the full, unreduced alignment
will be subject of future work. However, we note that for instances such as the Hsp70/110 family in which the
function of interest (e.g. allostery) is a property of a major subfamily, sector identification is robust to the binary
approximation (2).

C. ICA calculations

Di↵erent implementations of ICA use di↵erent measures of independence and di↵erent algorithms for optimizing
them. In this work, we used one of the simplest implementations of ICA, proposed in Ref. (4) with modifications
introduced in Ref. (5) (we also verified that the results were robustly recovered when using other algorithms for ICA).
For seqICA, the input of the algorithm is the k ⇥ M matrix Z whose rows correspond to |U1i, . . . , |Uki, while for
posICA it is the k ⇥ L matrix Z whose rows correspond to |V1i, . . . , |Vki. The algorithm iteratively updates the
unmixing matrix W , starting from the k ⇥ k identity matrix W = Ik, with increments �W given by

�W = ✏

✓
Ik +

✓
1� 2

1 + exp(�WZ)

◆
(WZ)>

◆
W. (7)

The parameter ✏ is a learning rate that has to be su�ciently small for the iterations to converge; in the present study,
we found that with ✏ = 10�4 both seqICA and posICA converged after 1000 iterations (for k = 3 components). The
iterations lead to W s for seqICA and W p for posICA. The vectors |Us

ni and |V s
n i are obtained by applying W s to

|Uni and |Vni, and the vectors |Up
ni and |V p

n i by applying W p to them. The resulting vectors were finally normalized
to unit length4.
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P
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matrix W p. In the present case however, these operations only result in an irrelevant translation of the vectors |V p

n i and |Up
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II. SUPPLEMENTARY TABLE

position i hi|V s
1 i position i hi|V s

1 i position i hi|V s
1 i

7 0.070 340 0.052 468 0.088

9 0.062 344 0.052 470 0.060

11 0.100 353 0.051 471 0.060

12 0.101 367 0.111 472 0.060

14 0.078 371 0.069 474 0.093

16 0.050 375 0.068 475 0.064

32 0.088 378 0.089 476 0.081

38 0.058 384 0.092 479 0.102

62 0.064 390 0.064 480 0.067

112 0.069 391 0.097 482 0.070

116 0.084 392 0.079 486 0.080

127 0.059 394 0.093 488 0.104

132 0.072 396 0.069 494 0.073

138 0.074 397 0.102 499 0.080

139 0.051 398 0.050 512 0.069

141 0.103 399 0.086 515 0.111

144 0.088 400 0.099 519 0.056

145 0.109 401 0.051

146 0.066 402 0.100

148 0.059 403 0.099

152 0.092 405 0.096

154 0.113 406 0.091

155 0.096 412 0.093

165 0.075 414 0.062

171 0.080 415 0.087

172 0.111 416 0.076

175 0.061 417 0.064

178 0.081 418 0.078

181 0.061 424 0.075

182 0.080 426 0.052

192 0.051 428 0.114

195 0.092 431 0.085

197 0.106 433 0.122

198 0.102 436 0.050

199 0.105 438 0.071

200 0.110 440 0.092

201 0.115 442 0.062

205 0.074 443 0.099

216 0.094 444 0.083

217 0.089 445 0.114

218 0.064 450 0.075

221 0.063 454 0.081

223 0.106 457 0.079

225 0.051 459 0.094

227 0.064 462 0.097

231 0.066 463 0.079

269 0.072 464 0.061

316 0.056 466 0.050

326 0.089 467 0.055

TABLE S1 - List of allosteric sector positions i and magnitude of contribution to the first independent component
of the C̃ positional correlation matrix |V s

1 i.
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III. SUPPLEMENTARY FIGURES

FIG. S1 - Histogram of eigenvalues of C̃ for the actual alignment (top) and randomized alignments (bottom). From the
comparison, 10 to 12 eigenvalues may be considered statistically significant. In the top figure, 4 eigenvalues stand apart very
clearly.
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FIG. S2 - Distribution of the sequences represented by projection on the top 4 eigenvectors of S̃. The di↵erent panels present
all pairwise combinations of the 4 vectors |U1i, |U2i, |U3i, |U4i. The first panel represents for instance each sequence s as a
square with two-dimensional coordinates (hs|U1i, hs|U2i). Four subfamilies of sequences are apparent along |U1i, |U2i, |U3i,
while |U4i exposes variation within the white sequences (colors assigned based on Fig. S3). See also Box Fig. 3A for a 3-D
representation of the first three panels
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FIG. S3 - Sequences projected along |Us
1 i, |Us

2 i, |Us
3 i, the maximally independent axis of sequence variations obtained by

seqICA, i.e., by applying ICA to the top 3 eigenvectors of S̃ (unmixing matrix W s). Colors were assigned to the sequences
based on these projections. Note that this assignment of colors is here to facilitate the visualization of the subfamilies and to
help the comparison with Fig. S1, but plays no role in the analysis. See also Box Fig. 3B for a 3-D representation of these
panels
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FIG. S4 - Positions projected along |V s
1 i, |V s

2 i, |V s
3 i, the axis of positional variations obtained by seqICA, i.e., by applying

W s to the 3 top eigenvectors of C̃. Non-sector positions are represented in gray if belonging to the nucleotide-binding domain
and in yellow if belonging to the substrate-binding domain (colors as in Fig. 1). A sector is defined as the group of positions i
satisfying hi|V s

1 i > ✏, where ✏ = 0.05 indicates a threshold of statistical significance (dashed vertical line); sector positions are
represented in blue if belonging to the nucleotide-binding domain and in green if belonging to the substrate-binding domain
(colors as in Fig. 2). Note that not all the positions are clearly visible here as some are plotted on top of others.

FIG. S5 - Comparison of conservation of each position in the allosteric sequences (white, cyan, and orange in Fig. S3) and non-
allosteric sequences (purple in Fig. S3). Conservation of position i is measured using the relative entropy Di (see Ref. (2)). The
sector positions, in blue or green, are conserved in the allosteric sequences but not in the non-allosteric sequences, consistently
with the interpretation that the sector represents a conserved functional property specific to the allosteric sequences (colors as
in Fig. S4).
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FIG. S6 - Positions projected along |V p
1 i, |V p

2 i, |V p
3 i, the maximally independent axis of positional variations obtained by

posICA, i.e., by applying ICA to the top 3 eigenvectors of C̃ (unmixing matrix W p). The colors are as in Fig. S4, showing that
the sector can be obtained either by seqICA or posICA with only minor di↵erences.
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FIG. S7 - Two views of the allosteric sector mapped onto a model of the ATP-bound state of E. coli DnaK. Sectors positions
are colored as in Fig. 2C (blue for the nucleotide binding domain and green for the substrate binding domain, but with a color
gradient that is proportional to the magnitude of contribution of each position to the allosteric sector (i.e. its weight along the
first independent component of the C̃ positional correlation matrix (|V S

1 i). See also Fig. 2B and Supplementary Table 1.
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FIG. S8 - Modeling Hsp70 structure in an ATP-bound, domain-docked conformation. (A) An initial Hsp70 homology model.
Threading the amino acid sequence of the E. coli Hsp70 DnaK directly onto an Hsp110(ATP) crystal structure (PDB code
2QXL) leads to poorly optimized interdomain contacts with a cavity of 286 Å3 volume within the interface (shown in blue).
(B) Prior to simulation, the domain surfaces near sector residues D326 (blue), K414 (cyan) and N415 (magenta) are not
contiguous in the DnaK(ATP) homology model. (C) During simulation, the interdomain cavity collapsed and the interdomain
sector positions joined into a single contiguous group across the interface (shown on the median structure of the trajectory).
(D-E) Molecular dynamics simulation is accompanied by formation of specific interdomain contacts consistent with exper-
imental data. Nucleotide-binding domain residue W102 (D) and substrate-binding domain residue K414 (E) initially have
solvent-accessible surface areas (SASA) nearly the same as in single-domain DnaK crystal structures (red circles, PDB codes
1DKG and 1DKZ). As the simulation progresses, both sites become buried through the formation of interdomain contacts.
Data are plotted as moving averages with a window size of 1 ns. Solvent-exposed residues are defined as sites with fractional
side chain accessible surface area greater than 0.25 relative to extended Gly-Xaa-Gly peptides, as calculated by the VADAR
web server using the default parameters. (F) Overall, the number of interdomain contacts between sector residues increases as
structural changes (RMSD) reach a plateau. Interdomain sector contacts are calculated as sector positions of separate domains
that contain side chain atoms within 5.0 Å of each other.
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FIG. S9 - Sector mutants DnaK D326V and N415G retain native secondary structural content and are thermally stable.
(A) Circular dichroism (CD) spectra and (B) thermal denaturation curves for D326V and N415G mutant DnaK proteins are
indistinguishable from those of wild type, indicating that these sector mutants are well-folded (wild type, black; D326V, blue;
N415G, red). Sector mutant CD spectra in (A) showed less than 5% intensity di↵erence from that of wild type and were
normalized to allow comparisons of curve shapes, which are diagnostic for secondary structural content.
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FIG. S10 - Sector mutants DnaK D326V and N415G show incomplete conversion to the ATP-bound state. Acrylamide
quenching of W102 fluorescence intensity is similar for wild type DnaK and sector mutants in the absence of ATP. However,
upon addition of ATP, sector mutants are partially defective in the extent to which they are quenched by acrylamide relative
to wild type (wild type, black; D326V, blue; N415G, red).


