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We present a simple physical model that recapitulates several features of biological
evolution, while being based only on thermally driven attachment and detachment
of elementary building blocks. Through its dynamics, this model samples a large and
diverse array of nonequilibrium steady states, both within and between independent
trajectories. These dynamics exhibit directionalitywith a quantity that increases in time,
selection, and preferential spatial expansion of particular states, as well as inheritance
in the form of correlated compositions between successive states, and environment-
dependent adaptation. The model challenges common conceptions regarding the
requirements for life-like properties: It does not involve separate mechanisms for
metabolism, replication, and compartmentalization; stores and transmits digital
information without template replication or assembly of large molecules; exhibits
selection both without and with reproduction; and undergoes growth without
autocatalysis. As the model is based on generic physical principles, it is amenable
to various experimental implementations.

evolution | origin of life | reproduction

Life is understood as both the product and the engine of evolutionary processes. In
extant life forms, reproduction of individuals with heritable variation, which is required
for Darwinian evolution, involves complex chemical and physical processes orchestrated
by intricate biomolecules that are, moreover, themselves the product of evolution. The
intricacy of these processes poses a significant challenge for conceptualizing life and
understanding how it originated. This challenge motivates the development of simple
physical models capable of mimicking biological evolution as an approach to elucidate
the minimal requirements for life-like features.

The focus of many efforts has been the design of simple computational (1) or physical
systems capable of reproduction. The latter range in scale from centimeters (2) to
microns (3) and nanometers (4, 5). The designs typically require ingenious mechanisms
and rely on external drives such as temperature cycling. Their common underlying
principle is autocatalysis, where one element promotes the formation of other elements
of the same type (6) or, more generally, where several elements collectively promote their
reproduction (7).

In any case, reproduction alone is not sufficient for Darwinian evolution: Significant
diversity must also be generated and inherited. Assemblies that reproduce by template
replication, either in the form of heteropolymers (8), supramolecular polymers (9) or
growing crystals (5, 10), are often taken as carriers of diversity. An alternative is to take
as carriers of diversity compositional states, defined by the relative concentration of a set
of chemical species (11). In this context, it has been proposed that evolution may operate
through transitions between autocatalytic “cores,” each supported by a different subset
of molecules (12). However, no experimentally feasible proposal has been made. Besides,
it has been argued that additional processes, such as low-rate background reactions or the
presence of compartments, may be necessary for evolution to occur by this process (13).
In light of these considerations, developing simple physical models capable of mimicking
biological evolution remains a central and open challenge.

Here, we propose a theoretical but physical and generic model that features
directionality, diversity, selection, growth, inheritance, and adaptation. It does not
include autocatalysis, compartments, or assemblies into large molecules, demonstrating
that they are not necessary for generating these evolutionary features.

1. Model

We provide three levels of description for our model: a physical description that defines
the fundamental components and their interactions, prescribing how these components
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bind and unbind due to thermal fluctuations; a detailed chemical
description that lists the elementary reactions between the
components; and a coarse-grained chemical description that
retains only the key dynamical variables, from which the results
presented in the figures are generated.

The three levels of description serve different purposes. The
last, coarse-grained level is employed in numerical simulations
to generate the results that we present. It is derived, un-
der certain specified conditions, from the description of all
elementary chemical reactions and their respective rates. This
detailed chemical description, which can also be used to study
thermodynamics, often serves as a starting point in models related
to the origin of life. Here, we derive it from a more fundamental
physical description. This approach ensures physical consistency,
provides guidance for experimental implementation, and allows
us to account for critical physical and geometric constraints
that are not considered in chemical models based solely on
thermodynamics—constraints often associated with “molecular
and functional complexity.”

For example, these constraints explain why experiments
with nonenzymatic autocatalysis often exhibit nonexponential
growth (4), as one manifestation of these constraints is product
inhibition (14). They also underlie the difficulty of evolving
replicases large enough to allow faithful replication (15), which
led to the proposal of a threshold known as the error catastro-
phe (16), again unexplained by thermodynamics. More generally,
the purported need for large molecules to support evolutionary
processes motivates many proposals that use molecular complex-
ity as a biosignature (17). By defining our model at the physical
level, we make explicit what we mean by a minimal and physical
model, namely one based only on rigid objects that does not
require or assume any assembly or any enzyme-like mechanism.

1.1. Physics and Chemistry. Inspired by a model in theoretical
ecology showing how networks of inhibitory interactions lead
to many stable states, and directional dynamics over long time
scales with regimes of spatial expansion (18), we define a chemical
system with a similar network of inhibitory interactions between
constituents. The stable states of the chemical system are defined
by the concentrations of N reactants Ai, i = 1..N . The
production of each Ai is promoted by a catalyst Ci, which
can be inhibited by the presence of certain other Aj. This can
lead to multistability, where certain reactants are “active,” i.e.
found at high levels, and prevent others from being catalyzed at
significant rates. This multistability generally requires a nonlinear
dependence of the inhibition of Ci on the concentration of
the inhibiting Aj (19). One mechanism often encountered in
biological systems is cooperativity, where inhibition involves two
or more Ai that interact nonadditively. Another mechanism is
inhibitor ultrasensitivity (20), which requires only the presence
of another molecule Bi that strongly binds to Ai. We adopt
this simpler mechanism where the nonlinearity arises from the
necessity for Ai to first saturate Bi before effectively inhibiting Cj.

The reaction that produces Ai could be of various types.
To emphasize that neither large molecules nor assembly are
important, we consider Ai to result from the dissociation of a
dimer AiA′i (Fig. 1A). Bi is defined as another monomer that
forms a dimer AiBi when it interacts with Ai. This interaction
is through the interface by which Ai interacts with both A′i
and Cj, so that Bi and Cj interact with Ai but not with AiA′i
(Fig. 1A and SI Appendix, section A). The catalyst Ci accelerates
the cleavage reaction AiA′i → Ai + A′i without being consumed.
In biology, most catalysis is mediated by enzymes, which are large
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B

Fig. 1. (A) We consider N reactions (i = 1..N) involving the dissociation of
dimers AiA′i into monomers Ai and A′i , catalyzed by Ci . The product Ai can bind
to and inhibit the catalyst Cj of another reaction j. In addition, Ai can bind
to Bi to form a dimer AiBi . (B) Inhibition is reciprocal: If Ai inhibits Cj , then Aj
inhibits Ci . (C) The network of reciprocal inhibition forms a graph where nodes
represent reactions i, and edges reciprocal inhibition. (D) Representation of
the 3 stable states associated with the graph in (C). By default, a node is
active unless repressed by an active neighboring node. In a stable state, a
node is active (in black) if and only if all the nodes to which it is connected are
inactive (in white). The productivity P of a state is the fraction of active nodes.
Transitions between states exhibit directionality, predominantly occurring
from low to high productivity states. (E) The reactions take place in an open
reactor where AiA′i , Bi , and Ci are continuously injected and where all species
are continuously diluted out. When the system is well mixed, the reactants are
homogeneously distributed throughout the reactor. (F ) Injection and dilution
are homogeneous in space, but heterogeneities can arise from stochastic
fluctuations and the limited diffusion of all species along a one-dimensional
direction. (G) Example trajectory for the concentrations [Ai ] associated with
nodes i = 3 and 4 of the graph in (C) in the well-mixed case, showing
stochastic switches between the two states with highest productivity P = 0.5
([A1] ' 1 and [A2] ' 0 remain roughly constant; see SI Appendix, Fig. S1).

molecules. To implement an elementary form of nonenzymatic
catalysis, we define Ci as a rigid body with two interacting sites
for binding to Ai and A′i, which achieves catalysis provided that
the distance between these two interacting sites and their affinity
are in appropriate ranges (21, 22).

An essential aspect of the model is the topology of the network
of inhibitory interactions. Each Ai does not inhibit every Cj
but only a small number (small compared to N ), and the
inhibition is reciprocal: If Ai inhibits Cj, then Aj also inhibits
Ci (Fig. 1B). This choice is motivated by general results in
statistical mechanics and theoretical ecology showing that such
sparse reciprocal interactions allow one to obtain a large number
of stable states (18, 23, 24). The structure of the reciprocal
inhibitory interactions is summarized in an undirected graph,
where each node represents a reaction i (Fig. 1C ). Below, we
take a random-regular graph with connectivity c = 3, that is,
randomly chosen from graphs where each node is connected to
exactly three other nodes.

2 of 7 https://doi.org/10.1073/pnas.2425753122 pnas.org
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1.2. Effective Reaction Kinetics. We study the reactions in the
setting of an open system where the substrate AiA′i for the
production of Ai, the binders Bi, and the catalysts Ci are
supplied externally at a constant flux, and where all chemical
species are continuously diluted out at a constant rate. If the
system is well mixed, this corresponds to a chemostat setup
(Fig. 1E). However, to obtain reproduction in our model, space
is essential, and we therefore consider that each chemical species
can diffuse in space with a diffusion constant that we take to be
the same for all species (Fig. 1F ). The supplied chemicals are
delivered uniformly throughout space. For simplicity, we assume
a one-dimensional space with periodic boundary conditions.
Finally, the discreteness of the molecules induces stochasticity,
also known as demographic noise in the context of evolutionary
dynamics.

Such a system is described mathematically by a set of coupled
reaction–diffusion Langevin equations (SI Appendix, section D).
To simplify the presentation and analysis, we consider a limit
where time-separation leads the dynamics to be effectively
described by a set of onlyN equations. In this limit, the inhibition
of Cj by Ai occurs on a faster timescale than the catalysis of Ai
by Ci, and the binding of Bi to Ai on an even faster timescale
(SI Appendix, section B). A large well-mixed system is then simply
described by

∂t [Ai] =
Λi

1 + Γ
∑

j∼i max(0, [Aj]− [Bj])
− �[Ai], [1]

where [Ai] and [Bi] represent the concentration of the elements
Ai and Bi, including those in the form of a dimer AiBi, but
excluding the dimers AiA′i. In this limit, [Bi] is constant and
can be treated as a model parameter. The first term of the
equation represents inhibited catalysis, where the sum in the
denominator is over all the Aj that can potentially inhibit Ci,
and the second term represents dilution at a rate �. We first
consider Λi to be the same for all i, which corresponds to a
uniform supply of each substrates AiA′i and an equal catalytic
efficiency of each catalyst Ci. Besides the graph of inhibitory
interaction defining the relationships i ∼ j, the equation has
the following independent parameters: the inhibitory strength
Γ, concentration [Bi] which we take to be independent of i,
corresponding to a uniform supply of all Bi, and the Λis (the
dilution rate � can always be absorbed into a redefinition of
the time unit). This equation is generalized to include diffusion
and demographic noise to describe the stochastic dynamics for
the local concentration [Ai](x, t) of molecules Ai at each spatial
location x and time t (SI Appendix, section D). Diffusion is
quantified by a diffusion constant D, and demographic noise by
a parameter! that scales with the inverse of the square root of the
volume (SI Appendix, section C). We simulate these equations
with a standard Euler–Maruyama algorithm, adding only a
constraint to force [Ai](x, t) to be nonnegative (SI Appendix,
section F).

Unless otherwise stated, we fix the following parameters:
N = 50, Λi = 1, Γ = 10, � = 1, [Bi] = 0.25, and ! = 0.1.
We discretize space in M = 10 or M = 100 cells of unit length,
while keeping a constant diffusion constantD = 1. To simulate a
corresponding well-mixed system, we divide ! by

√
M and then

set M = 1. The dynamics being stochastic whenever ! > 0,
different realization of the dynamics are obtained when starting
from the same initial condition, which by default we take to be
[Ai](x, t = 0) = 0 for all i and x.

2. Results

Simulations of the spatiotemporal dynamics described above
show that variables spend most of the time fluctuating around
two values, with abrupt switches between them: Ai is either
“active,” [Ai] = Λi/�, or “inactive,” [Ai] ' 0 (Fig. 1G). These
dynamics can be understood as fluctuations around stable states
of the deterministic dynamics without demographic noise. Stable
states are configurations of active and inactive Ai, where Ai
is active if and only if all the Aj to which it is connected
by inhibitory interactions are inactive (Fig. 1D). In graph
theory, these states are known as the maximal independent sets
of the inhibition graph. Enumerating them in a well-known
combinatorial problem (25). Noise-driven jumps between the
basins of different stable states involve switches between active
and inactive values for a number of variables. The distribution
of concentrations is therefore essentially bimodal (SI Appendix,
Fig. S4A), although the concentrations may take intermediate
values at the spatial boundaries separating two stable states.

An illustration of one realization of the process is shown
in Fig. 2A. In this representation, borrowed from analytical
chemistry (26), different colors represent different chemical
compositions, with similar colors indicating similar compositions
(SI Appendix, section F). At each space and time point, we identify
the nearest stable state (SI Appendix, section F), which is a steady
state for the deterministic dynamics without demographic noise.
This nearest stable state essentially amounts to considering Ai as
active or inactive depending on whether it is closer to 0 or to
Λi/� (SI Appendix, Fig. S4).

2.1. Extended Directional Evolution and Reproduction. We re-
produce an observation first made in the context of an analogous
Lotka–Volterra system with sparse inhibitory interactions (18):
Changes occur on timescales that far exceed any microscopic
timescale (T = 105 in Fig. 2 while all parameters in Eq. 1
are of order 1; see also SI Appendix, Figs. S2 and S3 for
other sample trajectories with the same or different inhibitory

A

C D

B

Fig. 2. (A) A representation of one trajectory in space and time using a low-
dimensional projection of the relative concentrations [Ai ] to visualize different
compositions by different colors (SI Appendix, section F). Here, the inhibition
graph is a random regular graph with N = 50 nodes and connectivity c = 3.
Space is divided in M = 100 cells and time is represented in log-scale (see SI
Appendix, Fig. S2 for other sample trajectories from the same inhibitory graph
and SI Appendix, Fig. S3 for sample trajectories from other graphs). (B) For the
same trajectory, productivity, i.e, fraction of active Ai . (C) Mean productivity
across space. For comparison, average over 20 different trajectories obtained
with exactly the same parameters, and the result for a corresponding well-
mixed system. The sample trajectory reaches the maximum productivity
(P = 22/50 = 0.44) for the chosen inhibitory graph. (D) Evolution of the
number of different stable states. The average value shows that while the
sample trajectory ends up in a single state, this is not always the case
(SI Appendix, Fig. S2).
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graphs). Unlike the Lotka–Volterra system, however, our model
does not have a Lyapunov function. Nevertheless, these changes
are directional: The system evolves toward states of increasing
“productivity,” where productivity of a state is the fraction of
active variables Ai in this state (Fig. 2 B and C ). Configurations
sampled through the dynamics are not strictly stable states but
the productivity of a configuration can be defined by considering
the nearest stable state to that configuration. A directional
evolution toward higher productivity is also obtained in well-
mixed systems (Fig. 2C and SI Appendix, Fig. S5), in which case
it can be understood formally. For well-mixed systems with strong
inhibition (large Γ) and low noise (small !), transitions between
states are indeed entirely driven by fluctuations that reduce the
concentrations of active variables, which then allows previously
inactive neighboring variables to become active. The transition
from a high-productivity state to a low-productivity state requires
more of these fluctuations and is therefore less probable than the
reverse transition (SI Appendix, section E). This asymmetry in
transition probabilities results in directional dynamics that favor
progression toward higher productivity states over time.

When mixing is not instantaneous, allowing for variation
in space, the dynamics is more complex and this increase in
productivity is accompanied by a spatial expansion of some states
at the expense of others, which is a form of reproduction. This
is evidenced by a decrease in the number of different states as a
function of time (Fig. 2D).

2.2. Diversity and Selection. When starting multiple replicate
trajectories from the same all-zero initial condition (Fig. 3A), a
large number of different stable states are attained in a finite time
(Fig. 3B). Measured by the Shannon diversity, the number of
states is in the thousands (in this instance, around 3,000 states;
SI Appendix, section F). Moreover, these states are very different
from each other (Fig. 3C ). However, this diversity is far less
than the total number of stable states, which for the particular
inhibitory graph used in Figs. 2 and 3, is N ' 4.8 105. More

A

C D

B

Fig. 3. (A) Illustration of the evolution of a system of size M = 10 over a
time T = 102, starting from all [Ai ] = 0. (B) When this evolution is repeated
105 times, some final states are reached more often than others: The most
common are found in nearly 1% of the samples (prevalence∼ 10−2) while the
least common are found only once (prevalence 10−5). Inset: Mean prevalence
of states with given productivity, with error-bars indicating the SD of the
distribution of prevalences. (C) Distribution of pairwise similarities between
states, measured by the fraction of active or inactive Ai that two states share
(in blue). For comparison, distribution of similarities between all stable states
(in orange). (D) Distribution of productivity in evolved states (in blue) versus
all stable states (in orange). The horizontal dashed line at frequency 10−5

marks the sampling limit given the 105 sample trajectories while the vertical
dashed line marks the maximum productivity for this system.

generally, for random-regular graphs of connectivity c = 3, the
number of stable states scales exponentially with the number
N of nodes, as N ∼ eNs with s ' 0.26 (SI Appendix,
Fig. S7), and similarly for other random sparsely connected graph
ensembles (24).

As further evidence that selection is taking place, the subset of
states that are reached most often are those with the highest
productivity (Fig. 3D), which is consistent with the overall
growth of productivity (Fig. 2C ). Productivity is thus analogous
to fitness: Current states with the highest productivity contribute
more to future states. This is seen in the dynamics at intermediate
and late times, t ≳ 10, where states of higher productivity are
more likely to expand in space, leading to an increase in the
average fitness (Fig. 2A). This analogy with fitness is further
supported by the analysis of competitions below. Note, however,
that productivity increases even in well-mixed systems in which
reproduction by spatial expansion cannot occur (SI Appendix,
Fig. S5), which represents a form of selection even in the absence
of reproduction.

2.3. Heredity and Competition. In well-mixed conditions, suc-
cessive states become increasingly similar over time, with the rate
of change between states gradually decreasing. This trend can
be interpreted as an evolution toward more accurate inheritance
(SI Appendix, Fig. S5). Similar features are observed in systems
with limited diffusion, as demonstrated by temporal correlation
functions (SI Appendix, Fig. S6). Additionally, in systems with
limited diffusion, certain states expand at the expense of others,
exhibiting a form of reproduction that also involves inheritance.
This spatial inheritance, which is a priori distinct from the
increasing correlation in time, is quantified through spatial
correlation functions (SI Appendix, Fig. S6).

To push this idea further, we consider competitions between
two evolved states that are obtained by the dynamics of the
previous subsection. The competition consists of initializing a
system with these two states, each occupying half of the one-
dimensional state space, and recording the state reached after a
finite time (Fig. 4A). This usually results in a state that is different
from either of the two competing states, but still much closer to
one of them than to any other evolved state (Fig. 4B). When the
two competing states have different productivity, this closest state
is almost always the competing state with greater productivity
(Fig. 4C ), a result consistent with viewing productivity as a form
of fitness.

The concepts of heredity and productivity are distinct: Hered-
ity refers to persistent temporal correlations, while productivity
refers to the number of active nodes. In our model, however, they
increase concomitantly. In the well-mixed setting, at the low-
noise limit (SI Appendix, section E), our model maps to a mean-
field glass model (23), and this coupling reflects the well-known
phenomenon of aging, where temporal correlations increase while
energy decreases (27). Under limited diffusion, these effects are
additionally coupled to spatial expansion (growth) and behavior
under competition, features not typically associated with glassy
systems.

2.4. Environments and Adaptation. In evolutionary biology,
adaptation is contingent on the particular environment in which
organisms evolve. Here, the environment comprises the substrates
AiA′i that are injected. We have so far assumed that all substrates
are injected at the same rate, but different environments can
be defined by assuming that they are injected at different rates,
which corresponds to taking Λi to depend on i in Eq. 1.
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A

B C

Fig. 4. (A) Two compositions obtained after evolution from the all-zero state
(Fig. 3A) are competed against each other by juxtaposing them in space.
(B) Distribution of pairwise similarities between the state resulting from the
competition (1+2) and the closest of the two competing states (1 or 2). For
comparison, we also show the closest similarity of another independently
evolved state 3 to either 1 or 2, and the similarity between 1 and 2. (C)
Fraction of times that the final state is more similar to the state with the
higher productivity of the two initial competing states, as a function of the
productivity difference between the two initial competing states.

If we take two states resulting from an evolution in two
different environments and compete them in one of the two
environments, we observe that the resulting state is most similar
to the state that evolved in the same environment, consistent with
the notion that this state is adapted to its environment (Fig. 5).
We also note that in a well-mixed system, the expression for the
productivity generalizes to provide an environment-dependent
notion of fitness (SI Appendix, section E).

3. Discussion and Conclusion

While nearly every specific feature of living systems has a
counterpart in one or more nonliving systems, understanding
what is required for a physical system to exhibit the full range
of features observed in living systems remains an open question.
Here, we focus on a subset of evolutionary features: directionality,
diversity, selection, growth, inheritance, and adaptation. In
Darwinian evolution, diversity, differential reproduction, and
inheritance form the foundations from which adaptation emerges
through natural selection (28). Our model follows a different
logic. Selection is present even in the well-mixed case, without
spatial growth (SI Appendix, Fig. S5). Spatial variation, when
mixing is not instantaneous, introduces a new resource—that is,
space—over which competition can occur. This spatial resource
transforms selection into a more Darwinian process in which
more productive states grow at the expense of less productive ones
(Fig. 2). This only begins after some time, consistent with the
view that other forms of evolutionary adaptation, which do not
require reproduction for selection and adaptation, may precede
Darwinian evolution (29–31). Our model also does not consider
metabolism, replication, and compartmentalization as separate
processes that would need to be integrated (32). Instead, the
same network of inhibitory reactions keeps the system in a state

of disequilibrium, supports hereditary information, and induces
spatial boundaries.

The essence of our model is an open dynamical system with
a large number of stable steady states between which transitions
occur stochastically, and which may expand in space. The analogy
comparing states to biological species and state transitions to
mutations in this context is not new and has been articulated
particularly by Decker, who called such systems bioids (33). More
generally, our model belongs to the broader class of models where
the units of selection are relative molecular concentrations rather
than specific (autocatalytic) molecules. Another model in this
class is the GARD (Graded Autocatalysis Replication Domain)
model, which describes autocatalytic growth of amphiphile
assemblies (11).

Our model differs from these and previous models with
compositional states in several ways. 1) It is based on simple
rigid elements that attach and detach and does not require the
presence or assembly of any large molecule. 2) It exhibits temporal
directionality, with an emerging notion of “fitness” that predicts
the outcome of competitions between states. 3) It exhibits
“unlimited inheritance,” i.e., the capacity to be in a number
of states much larger than the number of states that it samples at
any given time (34). 4) It does not involve autocatalysis.

The notion of autocatalysis is central to almost all previous
models displaying evolutionary features, including those not
based on compositional states. Autocatalysis is even often taken as
synonymous with reproduction for a chemical system (35), with
a distinction made between direct autocatalysis, where a molecule
catalyzes its own formation, and reflexive (auto)catalysis, where a
network of reactions is involved (36). Several proposals have
been made to formalize autocatalysis and allow a nontauto-
logical association with growth and reproduction. Most of
these formalizations focus primarily on necessary stoichiometric
conditions (7, 12), i.e., conditions that a network of reactions
must satisfy independently of kinetic rates or initial conditions.
Our model does not satisfy these stoichiometric conditions.
The feedback mechanism leading to multistability is based on
inhibition rather than autocatalysis, and reproduction is observed
only when spatial diffusion is considered: A well-mixed system
that is defined by the same reactions shows mutations but neither
growth nor reproduction. Unlike models based on stoichiometric
autocatalysis, different states of our system are underlined by

Fig. 5. An environment is defined by the influx rates of the substrates
AiA′i from which the Ai originate (Fig. 1A). Formally, it is specified by a
N-dimensional vector with components Λi (Eq. 1). Taking these components
uniformly at random in [0,1] to define two environments EΛ(1) and EΛ(2), we
evolve two systems, one in each environment, and let them compete in the
environment EΛ(1). The state resulting from this competition is very similar
to the state of the system that evolved in the same environment (s1,1+2
close to 1), and very dissimilar to the other state that evolved in a different
environment (s2,1+2 comparable to s1,2). This is consistent with an adaptation
of that system to its environment (M = 10, T = 102 as in Fig. 4).
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the same “core” of reactions (12, 13), and stochastic transitions
between states stem from fluctuations in the small numbers
of molecules without requiring any additional “background”
reactions. The mechanism that generates the different states
is more akin to symmetry breaking, where a common set of
constraints admits several different but related solutions (37).

Many chemical and physical models intended to imitate
evolutionary dynamics are designed to alternate between phases
of growth and fission, the latter typically triggered by external
mechanical or thermal drives (3, 11, 38–40). This aims to achieve
an overall exponential growth by enabling each separated product
to regrow independently. While we could introduce advection to
achieve a similar effect, we prefer to emphasize that exponential
growth is not necessary to obtain the evolutionary properties that
we describe, particularly exclusion by selection. Furthermore, a
variant of our model with an appropriate spatial connectivity
pattern through which diffusion occurs can exhibit exponential
growth without alternation (SI Appendix, Fig. S8). Regarding
exclusion, while exponential growth provides one mechanism
through the competitive principle (41), it is not the only way, as
illustrated in Fig. 2A and demonstrated in other contexts (14).
Selection between states in our model also does not arise from
competition for the supplied substrates AiA′i, which are never
exhausted. Instead, selection arises from the relative stability
of states and, when diffusion is limited, from an additional
competition for space.

Our model relies on two fundamental properties of its building
blocks: catalysis and specificity. We derive catalysis from funda-
mental physical principles, thus ensuring that it is a simple form
of catalysis that can be implemented by rigid (inert) substances.
Despite the inherent limitations of such simple catalysts, we
demonstrate that any parameter values of the coarse-grained
model are, in principle, achievable. Showing that the model
can be realized without enzyme-like catalysts obviates the need
to account for the emergence of such complex molecules. This
contrasts, for example, with models with template replication
of long heteropolymers mediated by polymerase-like catalysts,
where the involvement of complex molecules to ensure accurate
replication is thought to impose a constraint in the form of
an error threshold (16). This also contrasts with models that
require temperature cycles or other forms of external drives.
Note that we could also make the catalyst Ci nonflowing,
like minerals in some origin of life scenarios, and our results
would not change. Specificity of the interactions is critical and
requires a minimal form of complexity. Experimentally, this
could be implemented with heteropolymers such as RNAs,
which can form many specific interactions even with short
sequences (42, 43). Other assumptions we have made, such as
that all types are strictly equivalent, are for convenience and are
not necessary.

Genericity is a key feature of our model. The basic dynamical
mechanism requires a set of catalyzed reactions, in which the

product of some reactions inhibits other reactions in a sparse and
reciprocal manner. We have presented an implementation of
this mechanism with the dissociation of dimers into monomers,
but the reverse, binding reaction could be considered to achieve
the same phenomenology. Autocatalytic reactions could also be
considered, where there is no distinction between the catalyst
and the product of the reactions, thus reducing the number of
different elements. Beyond chemistry, the same principle drives
multistability in models of ecological dynamics (18) and gene reg-
ulation (44). Indeed, the same mechanism of reciprocal inhibition
is obtained in models where Ai represent individuals of a species
born of other individuals of the same species, and inhibition takes
the form of interspecies competition, or where they represent
transcription factors transcribed by genesCi, and inhibition takes
the form of gene repression. In this latter context, a mechanism
for biased jumps between two states has been proposed and
demonstrated, where noise in gene expression allows for adaptive
growth in the absence of explicit regulator (45). There, however,
the bias stems from cellular growth and division, with no analogy
to the mechanism of chemical growth by diffusion that our model
exhibits. Above, we considered reciprocal inhibitory interactions,
but the qualitative features are maintained even with some
degree of asymmetry (18) (where the product of one reaction
inhibits another reaction but not vice-verse). We also assumed
stochasticity to arise from the small numbers of molecules but
similar results could be obtained with large numbers of molecules
if another source of stochasticity drives the transitions between
states. Owing to the simple physical and generic mechanism
on which it is based, our model can potentially be imple-
mented in a variety of substrates at the molecular or colloidal
level.

The model certainly lacks many characteristics associated
with life, especially open-endedness (the potential for unlimited
growth in complexity) and self-reference (no clear distinction
between states and dynamical rules) (46): The state space is
large but predefined and finite, and optimal productivity can be
reached after a long but finite time. Evolution does not stop there,
since further transitions occur between states, but not further
adaptation. However, one can imagine generalizations in which,
for example, a state in which both Ai and Aj are present in high
concentration leads to the formation of substantial amount of
a new dimer AiAj which can catalyze the formation of another
Ak as Ck does, leading to a new state different from all those we
have described, thus expanding the state space. This and other
generalizations of the model are interesting directions for future
work.

Data, Materials, and Software Availability. All study data are included in
the article and/or SI Appendix.
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