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One-way catalysis in a solvable lattice model
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Catalysts speed up chemical reactions with no energy input and without being transformed in the process,
therefore leaving equilibrium constants unchanged. Some catalysts, however, are much more efficient at ac-
celerating one direction of a reaction. Is it possible for catalysis to be strictly unidirectional, accelerating only
one direction of a reaction? Can we observe directional catalysis by analyzing the microscopic trajectory of
a single reactant undergoing conversions between a substrate and a product state? We use the framework of
a simple but exactly solvable lattice model to study these questions. The model provides examples of strictly
one-way catalysts and illustrates a mathematical relationship between the asymmetric transition rates that
underlie directional catalysis and the symmetric transition fluxes that underlie chemical equilibrium. The degree
of directionality generally depends on the catalytic mechanism and we compare different mechanisms to show

how they can obey different scaling laws.
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I. INTRODUCTION

Catalysis, the acceleration of chemical reactions by sub-
stances that remain unchanged, is central to biological
processes as well as the chemical industry. It also plays a key
role in many nonequilibrium phenomena studied in statistical
physics, from molecular motors to active matter. In these
contexts, catalysis is most often treated phenomenologically
by imposing kinetic rates without considering the microscopic
interactions that underlie them. This allows one to ignore the
chemical mechanisms by which catalysis operates, but at the
cost of leaving aside any question pertaining to the physical
limitations of these mechanisms.

To address such questions, we have previously introduced
simplified models of catalysis in which the kinetic states and
rates of a catalytic cycle are derived from a microscopic de-
scription of interacting particles [1-3]. A first class of models,
in which the catalyst consists of rigidly held particles, re-
produces two general principles of chemical catalysis [1,2]:
Pauling’s principle stating that the geometry of an optimal
catalyst should be complementary to the transition state of the
reaction [4], and Sabatier’s principle stating that the interac-
tion between the reactants and the catalyst should be neither
too weak nor too strong [5]. For this class of models, we found
that catalysis can only lower the activation barrier of a reaction
by a finite factor [3], consistent with observations in chemistry
[6]. A second class of models, in which the catalyst can switch
between two internal states, reproduces the ability of enzymes
to overcome this limitation by an allosteric mechanism [3,6].

Here, we apply and extend our approach to examine a
simple question: If a substance is a catalyst for one direction
of a reaction, is it necessarily a catalyst for the opposite
direction of the same reaction? The principle that catalysis
does not affect equilibrium properties is sometimes misinter-
preted to imply that catalysis must be inherently bidirectional
[7-9], but directional catalysis, where catalysts preferentially
accelerate one direction of a reaction, is well documented in
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enzymology, where it is referred to as one-way catalysis [10],
as well as in chemistry, where it is referred to as catalytic
bias [11]. It has been repeatedly noted that such one-way
catalysis does not contradict any fundamental principle: Cat-
alysts accelerate only reactions that are thermodynamically
favorable, and the two directions of a reaction are favorable
under different conditions, with either a large concentration
of substrates or a large concentration of products [10,12].
However, this argument does not reveal what happens at the
microscopic level of individual molecules. In particular, at
chemical equilibrium, while the relative concentration of reac-
tants and products remains globally unchanged, the presence
of catalysts must affect the frequency of microscopic transi-
tions between substrates and products by the same factor. How
does the preferential acceleration of one direction of reaction
relate to this symmetric effect on transition frequencies?

To clarify this point, we draw on two elements of our
previous work. First, we study catalysis in the framework of
a simple lattice model that can be solved without approxima-
tion by exact numerical calculations and, in particular cases,
analytical calculations [3]. We analyze the simplest reaction
that can be defined in this framework: the dissociation or
association of two particles interacting with a short-range po-
tential. Second, we apply a quantitative definition of catalysis
based on first-passage times [2,13,14], which we have shown
to be consistent with other common definitions [15]. In this
framework, reaction rates, usually obtained from macroscopic
changes in substrate and product concentrations, are obtained
as inverse mean first-passage times for a single reactant un-
dergoing interconversions between a substrate and a product
state. As we illustrate, this single-particle view can reveal fea-
tures not apparent at the macroscopic level, including changes
in transition rates that do not affect global concentrations, or
fluctuations captured by the higher moments of first-passage
time distributions.

Using these approaches and notions from transition
path theory [16], we show that chemical equilibrium and
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directional catalysis are respectively encoded in microscopic
trajectories through reaction fluxes, which are symmetric at
chemical equilibrium, and reaction rates, which are generally
asymmetric. In particular, we show that it is possible to have
strictly one-way catalysis, where the rate of one side of a
reaction is accelerated but not the other. The demonstration
is based on a reaction that has two activation barriers of dif-
ferent nature, energetic and entropic. This leads us to examine
how different catalytic mechanisms are suitable for lowering
different types of activation barriers, and how they exhibit
different scaling laws as a function of the amplitude of these
activation barriers.

II. METHODS

For the sake of completeness, we first present the modeling
framework on which we rely, first introduced in Ref. [3]. A
compendium of useful mathematical formulas is provided in
the Appendixes.

A. Microscopic model

We consider a model of particles occupying the sites of
a two-dimensional hexagonal lattice with periodic boundary
conditions along one direction, as shown in Fig. 1(a). We
restrict our study to two nonoverlapping particles that can
diffuse from one site to the next and form a dimer when they
are close together. The interaction between the particles is
determined by the potential shown in Fig. 1(b), which depends
only on the distance d between the two particles, measured by
the minimum number of sites separating them on the lattice.
Particles at distance d = 1 are in a stable bound state denoted
S (which stands for substrate), particles at distance d > 3 are
in a noninteracting state denoted P (which stands for product),
while particles at distance d = 2 are in an unstable transition
state denoted S*. Paths from S to P, which must necessarily go
through S*, thus represent a “reaction” of dimer association.
Each of these macrostates consists of multiple microscopic
configurations in which the particles are located at different
lattice nodes. The potential has two parameters: a dissociation
barrier 4} and an association barrier h; [Fig. 1(b)]; in other
words, h represents the activation energy for the reaction of
dissociation of a dimer into two monomers and /i, for the
reverse reaction.

A configuration x = (i, i) with the two particles at posi-
tions i; and i, thus has an interaction energy given by

400 if d(iy, i) =0,
o hy —hf ifd(iy, i) =1,

Es(ll3l2): h: ]fd(ll,lz) =27 (1)
0 ifd(iy, i) = 3.

A rigid and fixed catalyst is defined by assigning to
some sites S = {Ji, ..., j,} of the lattice binding energies
€', ..., €2 such that when a particle occupies site ji, its
energy is lowered by €/*. As shown in previous works [1-3],
the simplest configuration providing catalysis consists of two
binding sites at distance d = 2 with a common binding energy
€., for example S = {1, 3} [red sites in Fig. 1(a)] with eC‘X =
ef.s = €. In general, the total energy of the configuration
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FIG. 1. Model definition. (a) A two-dimensional lattice of size
L x L with periodic boundary conditions along the x axis (repeated
purple nodes). The lattice nodes represent spatial locations that a par-
ticle can occupy if they are not already occupied by another particle.
The nodes are labeled i = 1, ..., L>. Some nodes S = {Jis ooy jnbs
e.g., S = {1, 3} shown in red, are defined as binding sites with asso-
ciated binding energies €. If a particle is at the binding site ji, the
energy is lowered by €/t. (b) The potential of interaction between two
particles. This potential is defined by the distance d between the two
particles, measured by the minimal path separating them. Particles
at distance d = 1 are in a bound state S, and particles at distance
d > 3 arein a free state 2P. The potential is parameterized by the two
activation energies ;" and h_ . Here, i} < ki, but the opposite is also
possible. (c) We group configurations into macrostates: For instance,
configurations where the two particles (in black) neither interact with
each other nor with the binding sites (in red) are represented by
C + S (which stands for catalyst + substrate). In total, we distinguish
six macrostates, illustrated here by a configuration that they contain
for the case of a catalyst consisting of two binding sites at distance
d = 2. The possible transitions between these different macrostates
define a catalytic cycle. The upper configurations in our depiction
of this cycle, in which the particles do not occupy the binding
sites, represent the spontaneous reaction. The lower configurations
represent the macrostates with an interaction with the catalyst: C-S
corresponds to a bound state with a particle on a binding site, C:S* to
a transition state with the two binding sites occupied, and C-P + P
to a state with one bound particle and one free particle.

x = (i1, i) is

E(ir,iy) = Eg(ir. i) — Y (80 + €8ji). ()
JjeS

where §;; = 1if iy = j and 0 otherwise.

To study catalysis of the dissociation reaction, we start with
two particles are in a bound “substrate” state S (defined by
a distance d = 2 between the two particles), away from the
binding sites. They can then diffuse across the lattice nodes
and may come to occupy one or two of the particular nodes
of the lattice that define the binding sites of the catalyst [red
nodes in Fig. 1(a)]. The dissociation of S into a product state P
(defined by a distance d > 3 and no interaction with the bind-
ing sites) can occur in two ways. It can occur spontaneously,
without any interaction with the binding sites, through a
high-energy transition state S* (where d = 2). Alternatively,
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it can occur through interaction with the binding sites. In
a particular case where the catalyst consists of two binding
sites at a distance of d = 2, the catalytic process first involves
a state where only one molecule occupies one binding site
(state C-S) before the two molecules occupy the two binding
sites (state C:ST). The activation energy of C-S — C:S* is
then reduced by €. compared to § — S*. From C:S*, one
molecule can then diffuse out of a binding site (state CP + P),
followed by the other (state C + 2P). However, all transitions
are reversible and catalysis may involve multiple binding and
unbinding events before the full reaction C +S — C + 2P
is completed. In the following, we also study the reverse
scenario, starting from C + 2P and ending in C + S, as well
as different configurations of the binding sites.

More formally, transitions can occur as a result of thermal
fluctuations from one configuration x of the particles to an-
other y where one of the particles has moved to a neighboring
site. Each configuration consists of the positions on the lattice
of the two particles, indicated by the labels (i;, iy) of the
nodes that they occupy. If x = (i}, i), we can have either
y= (], ) withd(@, i;) = 1land d(i|, ir) > 0, ory = (i, i})
with d(i}, i) =1 and d (7}, i;) > 0. We assume that these
microscopic transitions occur at a rate given by

p(x — y) = pomin(l, e FEO=EWD), 3)

where p defines a diffusion rate, which we set to 1 in the
following, and where 8 = 1/(kgT) is the inverse of the tem-
perature multiplied by the Boltzmann constant. This choice of
transition rates, corresponding to the Metropolis rule, ensures
that the dynamics satisfies detailed balance, thereby guaran-
teeing that the system asymptotically reaches an equilibrium
distribution governed by the Boltzmann law, where the prob-
ability 77 (x) of being in the configuration x is proportional to
e PEMX)

To sum up, the parameters of the microscopic model in-
clude the geometry of the lattice, which we take to be of
dimension L x L [L = 6 in Fig. 1(a)], the two activation en-
ergies Al and h; for the spontaneous reaction, the choice
of the number and location of the binding sites S and their
energies €, which define a putative catalyst, and the inverse
temperature . While the latter could be fixed to 1 without
loss of generality, it is convenient to keep it as an explicit
parameter to study scaling laws in the limit of a low tempera-
tures (8 — 00). Unless otherwise mentioned, we take hj =1,
hy =2,€, =1/2,and B = 10 for the figures.

B. Definition and quantification of catalysis

Following Refs. [2,3,15], we define and quantify cataly-
sis by the mean first-passage time to complete a reaction.
This is motivated by the identification of reaction rates,
commonly studied in chemical kinetics, with inverse mean
first-passage times [13]. We focus first on the cleavage re-
action by which a dimer of two particles at distance d = 1
dissociates into two free particles at distance d > 3. To for-
mally define this reaction, we collect all configurations in
which the particles form a dimer that does not interact with the
catalyst, i.e., configurations x = (i}, ip) with d(i, i) = 1 and
i1,ip ¢ S into a macrostate C + S, and all configurations
where the two particles are free and not interacting with the

catalyst, i.e., configurations x = (i}, i) with d(iy, i) > 3 and
i1,ip ¢ S into a macrostate C + 2P. A catalyzed reaction,
denoted C + S — C + 2P, is achieved through a path from a
configuration in C 4 S to a configuration in C + 2P. Starting
from a given configuration x in C + §, the time to first reach a
configuration in C 4 2P based on Eq. (3) is stochastic. The
average time over stochastic trajectories defines the mean
first-passage time T,_ cyop. Further averaging over the con-
figurations x in C 4 S defines the global mean first-passage
time T4 s c+op. This definition can be extended to define the
moment of order n of the first-passage time, with the mean
first-passage time corresponding to the first moment n = 1.

When all interaction energies €/* are zero, so that the
binding sites do not differ from other lattice sites, the mean
first-passage time indicates the mean time to complete the
spontaneous reaction and is simply denoted Ts_, p [17]. We say
that a particular choice of interaction energies defines a cata-
lyst if Ty s—c+op is less than Tg_,p. The ratio between these
two times, denoted ncis—ci2p = Ts—2p/Tetrs—sci2p, Which
must be >1 for catalysis to occur, quantifies the catalytic
efficiency. We have previously shown how this definition of
catalysis is consistent with other definitions in chemistry and
enzymology, and how, for the particular cleavage reaction
S — 2P, performing the analysis with two particles is suffi-
cient to cover catalysis with more particles [15].

C. Calculations

Several approaches are available to compute the moments
of first-passage times and thus verify whether a particular
choice of binding sites and their interaction energy defines a
catalyst. One possibility is to perform numerical simulations
of stochastic trajectories using a kinetic Monte Carlo algo-
rithm [18]. This approach is not exact, but it is very general.
The main difficulty is that the time for the simulations diverges
with increasing values of 8. Alternative numerical approaches
have been developed to get around this problem [19]. Here, we
follow Ref. [3] and compute the mean first passage directly
by algebraic manipulation of the transition matrix of the asso-
ciated Markov process, which amounts to directly solving the
master equation or, more precisely, the backward Kolmogorov
equation (see Appendixes). This approach is exact to numer-
ical precision, but is only suitable for relatively small lattice
sizes, since it involves inverting a matrix whose size scales
with the total number of configurations. If L? is the number
of lattice sites, then the number of different configurations
x is indeed N = L*(L* — 1), which scales as L*. Since the
questions that we are investigating only require a lattice size
sufficient to place four consecutive binding sites at the bot-
tom (the maximal number of binding sites considered in this
work), this size can be small and we take L = 6 here, which
allows us to make this approach tractable. In addition to these
exact numerical calculations, we also analyze coarse-grained
descriptions of the models in the form of Markov processes
between the different macrostates, which allows for analytical
results.

Using our approach to exactly solve the dynamics for
our lattice model, we obtain e s .ci2p = Tsop/Teassciop
for a putative catalyst consisting of two binding sites, S =
{1, 3} with a common interaction energy €.,. The results lead
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FIG. 2. Catalytic efficiency ncis—ciop for a catalyst consisting
of two sites at distance d = 2, here shown for b} =1, h; =2, €., =
1/2, and B = 10, unless one of these parameters is varied. Catalysis
occurs when ncys—.ci2p > 1, a threshold indicated by the horizontal
dashed black line. (a) Dependence on the interaction €., showing a
maximum at an intermediate value of €,,. This graph is analogous to
Volcano plots drawn from empirical data in heterogeneous catalysis
and reflects the Sabatier principle [20]: Too weak an interaction is in-
sufficient to accelerate the chemical step C-S — C-P + P, while too
strong an interaction prevents efficient release C-P + P — C + 2P.
(b) Dependence on the reverse activation energy /,, showing that
catalysis requires a sufficiently large value of A, and that catalytic
efficiency saturates at large values of & . (c) Catalytic efficiency as
a function of inverse temperature 8, showing exponential scaling.
The exponent is 1 — a, where a is given in Eq. (A1). See Fig. 7 for a
representation of the mean first-passage times from which ncis_.ciop
is computed, along with standard deviations based on the second
moment of these first-passage times.

to several observations [3] (Fig. 2). First, catalysis
(Nc+s—c+ap > 1) occurs only for sufficiently small values of
the interaction strength €., and sufficiently large values of
the reverse activation barrier 4. Second, catalysis is optimal
when € takes an intermediate value and when A" is maximal.
Finally, ncys—cyop scales exponentially with 8 for large 8,
with an exponent that can be determined analytically (see
Appendix A). As we will see, this exponent quantifies the
catalytic efficiency of different mechanisms independently
of their geometric peculiarities. It has a simple physical in-
terpretation in terms of activation energy. For example, if
we consider the spontaneous reaction § — 2P with activa-
tion energy hj, such that for large B, Teis—c+op ~ P s
we generally expect T s_.c42p ~ P where a < 1 repre-
sents the factor by which the catalyst reduces the activation
energy. The smaller a, the more efficient the catalysis, with
a =0 representing perfect or diffusion-limited catalysis,
where energetic barriers are effectively eliminated. Given
such a scaling, fcys_cpop ~ e~

III. RESULTS

A. One-way catalysis

Is a catalyst for one reaction necessarily a catalyst for the
reverse reaction? As such, the question may be considered ill
posed, since catalysis is not only an intrinsic property of the
catalyst, but depends on the extrinsic conditions under which
it operates, which include, for example, the volume and the
temperature [15]. However, we can ask whether a molecule
can act as a catalyst for a reaction under certain extrinsic
conditions, while never acting as a catalyst for the reverse
reaction under any extrinsic conditions.

The reverse reaction for the dissociation reaction S — 2P
is the association reaction 2P — S, whose substrates are now
the two free particles (which we still denote as 2P) and whose
product is a bound dimer (which we still denote as S). As with
the forward reaction S — 2P, we can ask whether a partic-
ular configuration of binding sites provides catalysis for the
reverse reaction 2P — S, using ncyop—c+s > 1 as a criterion.
The exact same approach based on first-passage times applies,
except that the initial and final states are reversed. The key dif-
ference is in the mechanisms: The forward reaction S — 2P
involves a purely energetic activation barrier A", while the
reverse reaction 2P — S involves, in addition to an energetic
activation barrier &, an entropic barrier due to the need for
two particles to diffuse to find each other. As we show, some
configurations of the binding sites can only lower this entropic
barrier and not any energetic barrier, in which case the reverse
reaction 2P — S is catalyzed but not the forward reaction
S — 2P.

From solving numerically the master equation for our
lattice model, we find that the design considered so far, con-
sisting of two binding sites at a distance of d = 2, shows
bidirectionality for most binding energies. It catalyzes disso-
ciation § — 2P and reverse dimerization 2P — § over nearly
the same range of interaction strengths €., [Fig. 3(a)], al-
though it is possible to find values of €, e.g., €;; = 1, for
which (weak) forward catalysis occurs (c+s—c+2p > 1) but
not reverse catalysis (ctop—c+s < 1). Changing the geome-
try of the binding sites to form four consecutive binding sites,
S ={1,2,3,4} with the sites labeled as in Fig. 1(a), pro-
vides an example of strictly one-way catalysis. As shown in
Fig. 3(f), forward catalysis is never observed (fc4+s—c+op < 1
for any €.,), while reverse catalysis is observed (nctop—cts >
1 for some €.).

As anticipated, the difference is due to the different nature
of the forward and backward kinetic barriers of the sponta-
neous reaction. The forward reaction § — 2P is limited by a
purely energetic barrier, while the backward reaction 2P — S
includes an entropic barrier associated with the time it takes
for the two particles to diffuse toward each other. A patch
of four binding sites only reduces this entropic barrier by
increasing the chance of two particles interacting with each
other, and therefore acts only in one direction.

More precisely, to accelerate the forward reaction S — 2P,
a catalyst must specifically stabilize the transition state S* of
the reaction, when the two particles are at a distance d = 2
[Fig. 2(b)]. This is achieved with two binding sites separated
by exactly the distance between the particles in the transition
state: the total interaction energy is 2¢. for the transition state
complex C :S*%, while it is only €., for CS and CP [Fig. 2(c)].
This mechanism of “strain catalysis” [21] follows the Pauling
principle [4], with a geometry complementary to the transition
state. Now, in contrast, the four-site design does not discrimi-
nate the substrate S, the transition state S*, and the product 2P:
All bind with the same total interaction energy 2¢.,. On the
other hand, the reverse reaction 2P — S has both an energetic
barrier, represented by i [Fig. 2(b)], and an entropic barrier,
corresponding to the need for the two particles to diffuse
toward each other. While a patch of four binding sites cannot
lower the energetic barrier, it can lower the entropic barrier
by keeping the two particles in close proximity until they
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FIG. 3. Forward vs reverse catalysis with a two-site catalyst, with two binding sites at distance d = 2 (top row), or four-site catalyst,
with four consecutive binding sites (bottom row). (a) ncis—c+2p (in blue) vs neiop—cys (in orange), showing comparable behavior as a
function of interaction strength €.,. (b) Steady-state probabilities of the three macrostates C + S, C + 2P, and CP + P, showing a constant ratio
Tcts/Terop (inset), consistent with an unchanged equilibrium constant. (c) Steady-state flux ¢cis..c2p at which transitions occur between
C + S and C + 2P (rescaled by the constant factor e’ to be of order one). (d) Steady-state probabilities Acys_c2p (in blue) and Acyrp_ s (in
orange) for the system to be on its way from C + S to C 4 2P or from C + 2P to C + S, normalized to their values Ao when €., = 0. Although
not visible in this representation of relative variations, both quantities vary by the same absolute amount, since Acis—ci2p + Acrop—cts = 1
for any value of €. (e) Catalytic rates kcis—ci2r = Pcrs—ci2p/Acrs—c+op (A0 blue) and keyopcrs = Perar—c+s/ c+ap—c+s (in orange).
Normalized to their values ky when €., = 0, these rates coincide within a few percent with ncys_.c12p and nei2p— s (relative difference shown
in inset). (f), (g) Comparable plots for a system with four consecutive binding sites. The main difference is that catalysis is only observed in

the opposite direction, with ncis—.c+2p < 1 for all values of €., (f).

cross the energetic barrier. This mechanism of catalysis by
proximity does not require any special geometry but applies
only to multireactant reactions and is therefore only effective
for the reverse reaction 2P — S.

B. Catalysis at thermal equilibrium

How is the observation of one-way catalysis consistent
with thermodynamic principles? Indeed, one-way catalysis is
often erroneously ruled out on the basis that catalysis does not
change the equilibrium constant and therefore must accelerate
both sides of a reaction equally [7]. To clarify this point,
here we analyze our models under steady-state conditions that
reproduce equilibrium properties.

Chemical equilibrium is typically defined at the macro-
scopic level, involving a large number of well-mixed particles.
In this context, it is characterized by a specific ratio of sub-
strate to product concentrations, known as the equilibrium
constant. For the reaction S = 2P studied so far, chemical

equilibrium is thus characterized at the macroscopic level
by [S]1/ [P)? = e —hs , where [S] and [P] denote the concen-
trations of substrates and products. In the single-molecule
context in which we analyze our model, we can instead invoke
the ergodic principle to characterize chemical equilibrium
by the ratio 7g/mp of the steady-state probabilities of the
macrostates S and 2P, wg and m,p, which are are straight-
forward to calculate for our small system (Appendix C). We
verify that the presence of binding sites preserves the chem-
ical equilibrium, m¢ys/mcq2p = 7s/7p, independent of the
geometry of the binding sites or the interaction strength €.
[Figs. 3(b) and 3(g), insets]. However, the values of mcqg

and mcyop change with €., as other alternative macrostates
involving interactions with the binding sites are populated
[Figs. 3(b) and 3(g)].

While catalysis does not affect the relative occurrence of
free substrates and free products at steady state, it does affect
the flux between these states, i.e., the frequency with which
two particles go from a free dimer (macrostate C + §) to two
free particles (macrostate C + 2P). To make this point, we
draw on concepts from transition path theory [16]. The first
concept is that of flux: In any dynamics defined by a Markov
process, as is the case in our microscopic model, the steady-
state flux ¢4_, p from one macrostate A to another macrostate
B can be defined as the frequency with which the system first
reaches a microscopic configurations in B after visiting the
set A of microscopic configurations. Formally, for a trajectory
x(t), we can define the time of the last visit to a configuration
inAas €4(t) = sup{t’ <t :x(t') € A} and similarly for £5(t).
We say that x(¢) last visited A if £4(¢) > £p(t); otherwise it
last visited B. Along a trajectory, we have times where £4(¢) >
£p(t) and others where £4(t) > £p(t). If the number of times
we go from from €4(¢) > £5(t) to £4(t) < £p(¢) over an inter-
val of time T is Na—, g(T'), then ¢p_.p = limy_, oo Na—p(T)/T
(see Fig. 8 for a graphical illustration). Since there must be
as many transitions from £4(¢) > £g(t) to £4(t) < €p(t) than
from £p(t) > £4(¢) to £p(t) < €4(t), the flux is symmetric
with ¢4 p = ¢p_ 4, which justifies denoting it by ¢4, 5. Note
that this symmetry holds even if the dynamics involve micro-
scopic configurations that are neither in A nor in B. Applied
to A=C+ S and B = C + 2P, this symmetry captures the
intuition that a catalyst has a symmetrical incidence on the
two directions of a reaction. Fluxes can be computed exactly

064106-5



MAHDAVI, SAKREF, AND RIVOIRE

PHYSICAL REVIEW E 111, 064106 (2025)

for our small system (Appendix C). We find that the flux
dc+sc+2p depends nontrivially on the interaction strength
€.s With a maximum at an intermediate value of €., for both
the two-site and the four-site designs [Figs. 3(c)-3(h)].

To clarify how a symmetric flux ¢4.p between two
macrostates A and B relates to asymmetric mean first-passage
times Ty_.p and Tp_. 4, one must consider another concept
from transition path theory, the steady-state probabilities
Aa—p and Ap_,4 that the system is in the process of transi-
tioning from A to B or from B to A [22]. Formally, As_p
is defined as the steady-state probability that the system last
visited A and not B, and similarly for Ag_ 4. In terms of the
last visiting times £4(¢) and €p(t), As—p is the probability
that €4(t) > £p(t) along a long trajectory: As_p = P[£a()
> ¢p(t)] (see Fig. 8 for a graphical illustration). These
transition probabilities can again be computed exactly (Ap-
pendix C). A4, g and Ap_, 4 are generally different, but directly
related: At any given time, the system is either transitioning
from A to B or from B to A, so that Ay_,p + Apa = 1.
This follows from the observation that either £4(¢) > £5(t) or
La(t) < €p(t), so that P[£s(t) > £p(t)] + P[La(t) < £p(t)] =
1 and therefore As—. g + Ag—.4 = 1. Combining the flux ¢4..p
and the transition probability A4_.p leads to the rate ks p
at which a system in A transitions to B, defined by k45 =
¢A4>B/)‘A4>B [22]

Since A and B represent two different sets of configu-
rations, the rate k4. p provides a coarse-grained description
of the microscopic dynamics as a Markov process with
states A and B. In general, this description is not exact.
In particular, the times spent in A and B are generally not
exponentially distributed as expected from a Markov pro-
cess. However, this approximation is typically made in the
context of chemical reactions, where it is often accurate.
To the extent that this approximation is valid, k4 p can
be interpreted as a transition rate from A to B and be re-
lated to the mean first-passage time T4 p from A to B by
ka—p =~ 1/Ty_p [23] (note that k is then a transition rate
between macrostates distinct from the microscopic transition
rates between microstates denoted by p). More precisely, the
mean first-passage times T4, p and Tp_,4 are related to the
flux ¢pacsp by pap = 1/(Ty—p + Tp—a) and Ay_.p = T4/
(Ty—p + Tp—4) [23]. These general mathematical relation-
ships show how the maintenance of equilibrium properties,
which is a matter of flux between macrostates, relates with
asymmetric catalysis, which is a matter of rates between
macrostates:

Pcrsoc+2p =2 keps—cyapAcys—ciop 4

> kctopscashciap—scs- )]

As above, ~ indicates an approximation that becomes a
strict identity when the coarse-grained dynamics between
macrostates is strictly a Markov process.

Calculating Acis—c+2p and Acyop_.cys for the two
binding site geometries considered so far, we find that
Ac+s—c+op undergoes large relative changes when €. is
varied, but not Aciap—c+s [Figs. 3(d) and 3(i)]. Both, how-
ever, undergo the same absolute changes since Acts—ciop +
Aciop—sces = 1. The difference is that Acis.ciop >
Actop—sc+s as a consequence of the parameters chosen

in Fig. 3, which favor C +2P over C +S since e P
< P, Using the ratio of ¢cisociop OVEr Acis—ciop
or Aciop—c+s to estimate the rates kcis—.ciop and
kcior—cys, we verify keys.cqop/ks—op 2 Ncts—c4+2p and
kciopscys/kopss = ncyarscys  [Figs. 3(a), 3(e), 3(D),
and 3(j)]. This justifies to treat the coarse-grained dynamics
between macrostates as approximately Markovian. For the
models and parameters of Fig. 3, this approximation holds
within 4% [insets of Figs. 3(e) and 3(j)]. Below, we gener-
alize such coarse-grained descriptions to account for the other
macrostates where the binding sites are occupied by one or
two particles.

C. Entropic versus strain catalysis

The two-site and four-site geometries are two alternative
designs for catalyzing the dimerization reaction 2P — S, us-
ing different mechanisms: The four-site system, with four
consecutive binding sites, relies only on catalysis by prox-
imity, while the two-site system, with two binding sites at
distance d = 2, involves a specific stabilization of the tran-
sition state. Here, we compare the efficiency of these two
mechanisms by extending the scaling analysis previously per-
formed for the two-site catalysis of the cleavage reaction
S — 2P [3] (see Appendix A).

Figure 4 shows that the two mechanisms have different
scaling laws in the low-temperature limit. With the two-site
system we recover the conclusions obtained with the forward
reaction S — 2P [3]: The optimal interaction strength scales
with the activation energy, here h, as €., = h; /2, leading to
an optimal catalytic efficiency ncy2p— c+s that increases with
hy as nciap—cys ~ €' /? (see Appendix A). As for the for-
ward reaction, the activation energy is reduced by a factor of 2
at most. For the four-site system, however, we observe that the
optimal interaction strength scales with the activation energy
hy as €, ~ h_ /3 and that the optimal catalytic efficiency
Nc+2p—c+s reaches a plateau as i~ increases [Figs. 3(d)-3(f)].

The scaling laws for the catalysis of the dimerization reac-
tion 2P — S by the two-site system are explained by the same
arguments that we used for the catalysis of the dissociation re-
action S — 2P (see Appendix A). These arguments are based
on the assumption that the diffusion is effectively instanta-
neous at low temperature, where crossing the highest-energy
barrier is the limiting process. However, this assumption can-
not be made when considering the catalysis of 2P — S by
four consecutive binding sites, since the time it takes for two
particles to diffuse toward each other is precisely what the
four-site catalyst reduces.

To understand what limits catalysis in this case, we must
consider the total area V = L? of the lattice as a parameter,
since this is the parameter that controls the time spent diffus-
ing. The coarse-grained model (see Appendix B) that captures
the phenomenology in the 4 >> A limit is of the form

2
C+2pP :\—_d—‘CP+P:—_d—\CP2 YesScovs 6
where k; is a diffusion constant that scales with volume
as kg ~ 1/V, k. is a dissociation rate that scales as k., ~
e P and k, is the rate at which the activation barrier hy is
crossed when the two reactants are close together that scales
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FIG. 4. Low-temperature scaling laws for the catalysis of the dimerization reaction 2P — S for a two-site (top row) or a four-site (bottom
row) catalyst. (a) Catalytic efficiency nc42p—c+s as a function of interaction strength €., for different activation barriers h_", showing the shape
of a Volcano plot as for the opposite reaction § — 2P [Fig. 2(a)]. (b) Scaling of the optimal interaction strength €., as a function of 4. The
dashed line has a slope of 1/2, indicating a scaling of €., ~ h_ /2. (c) Scaling of the optimum of 1ci2p_.c+s When varying €., as a function of
h_, showing a scaling nci2p—c4s ™~ e (d) As in (a), but for four consecutive binding sites (note the different scale on the y axis). With four
consecutive binding sites, (e) the optimal interaction strength €. scales as 4 /3 and (f) the optimal catalytic efficiency saturates at large values

of h .

as k; ~ e P Neglecting the spontaneous reaction, we can
apply the general formula for mean first-passage times of
one-dimensional Markov chains (Appendix C) to obtain

. _2+1+1+kcs+kw+kfs
CH+2P—>C+S — kd kS ng k; kdks k‘%ké

)

In the low-temperature limit, where k; is small, the optimal
value of k., is determined by l/kf_s + ke /kaks, whose max-
imum is obtained when k., ~ k!/3; this explains the scaling
of the optimal €., as &, /3 in Fig. 4(e). In the same limit,
however, the value of Tei,p.cis is dominated by 2/k; +
1/k;, which is independent of €.; this explains the plateau
in Fig. 4(f) and has a simple interpretation: Catalysis by
promixity is limited by the time for the reactants to find the
catalyst (2/k;) and the time for them to cross the activa-
tion energy when in proximity (1/k,), which are independent
of €.

Despite operating on different principles and exhibiting
different scaling behaviors, the two-site and four-site systems
both give rise to Volcano plots with an optimal interaction
energy at a finite value [Figs. 4(a) and 4(d)], in accordance
with the Sabatier principle [20]. However, the shape of these
Volcano plots is different. In the case of the four-site system
operating by catalysis by proximity, a plateau is observed
that can be understood from the coarse-grained model: This
plateau extends to ~h_ /2, which marks a crossover between
the dominance of the term 1/, and the term 1/k2 in Eq. (7),
occurring when k., ~ k!/2. In summary, optimal catalysis
by proximity require neither a fine-tuned geometry nor a
fine-tuned interaction strength, unlike optimal strain cataly-
sis. However, catalysis by proximity is generally much less

efficient due to the fact that the entropic barrier that it reduces
is typically lower than the energetic barrier that strain catalysis
reduces.

D. Optimal rigid catalysis

We have so far considered two geometries of the binding
sites and found that for the forward reaction S — 2P only the
two-site geometry, where the binding sites are separated by
d = 2, can confer catalysis. In previous work [3], we showed
that a single binding site cannot confer catalysis, nor can two
sites at a distance different from the transition state geometry
d = 2. We also showed that introducing asymmetry into the
two-site system by allowing each binding site to have a dif-
ferent interaction energy does not provide any improvement.
However, we can still wonder if a system with more than
two sites, possibly with different interaction energies, can
outperform a symmetric two-site system, i.e., lead to higher
values of Nc+s—c+2pP-

One possibility is to have more pairs of sites that imple-
ment the same mechanism of strain catalysis. For example, in
the context of our 6 x 6 lattice, we can add a third binding site
at j = 5 [Fig. 1(a)], which, given the periodic boundary con-
ditions, provides three pairs of binding sites at distance d =
2. This model can be considered a model of heterogeneous
catalysis, which typically involves a surface of periodically
repeated binding sites. We verify that the additional binding
site does provide an improvement [Fig. 5(a)], but this corre-
sponds to an entropic factor that leaves the low-temperature
scaling properties unchanged, in particular the factor a that
controls the scaling of the catalytic efficiency ncys—c42p With
the amplitude of the activation energy [see Eq. (A1)].
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FIG. 5. Catalysis of the cleavage reaction S — 2P when a third
binding site is introduced in addition to the two red binding sites
shown in Fig. 1. (a) Adding another site at j = 5 effectively increases
the number of site pairs at distance d = 2 and thus provides an en-
tropic improvement. For a fair comparison, ncis—c+ep 1S estimated
by excluding from C + S and C + 2P all sites at the bottom of the
lattice, which explains the slight difference of the blue curve from
that of Fig. 2(a). (b) Addition of a third site at different positions
next to one of the two binding sites at j = 1 and j = 3 [Fig. 1(a)].
The labels indicate the third location where the binding site is added.
Only when a third site is added between the other two (at j = 2) is a
small improvement observed, for a destabilizing energy €/ < 0.

Another question is whether it is possible to improve the
two-site catalyst by adding a third binding site through a
new or additional mechanism. As a systematic approach, we
consider the addition of a third binding site at any site adjacent
to one of the two binding sites at distance d = 2. The binding
energy at this new site is taken to be €., possibly different
from the binding energy €., at the two sites j =1 and j =3
[Fig. 1(a)]. Considering the symmetries, four geometries are
possible where the third binding site is located at sites j = 2,
4,7, or 9 [Fig. 1(a)]. We find that only in one case, when the
third site is between the other two (j = 2), a small improve-
ment is observed, provided that the interaction is repulsive,
ie., €., < 0[Fig. 5(b)].

First, we can understand why adding a third site at any
other position is detrimental. Naively, a third site at j = 4, for
example, can be thought of as favoring the release step C-P +
P — C 4 2P by providing a “stepping stone” that replaces the
crossing of a barrier €., with the crossing of two smaller bar-
riers whose sum is €. Strain catalysis with two binding sites
at distance d = 2 essentially works like this: The barrier 4 is
replaced by two smaller barriers h;r — €c5 and €. [see Eq. (A6)
with hj <& h{]. But, as we noted, this mechanism only works
in the presence of a reverse barrier 2, > 0. Simply replacing
one barrier by two smaller ones in the absence of a reverse
barrier never results in acceleration. Mathematically, using
the formula for mean first-passage times of one-dimensional
Markov processes (Appendix C), this amounts to replac-
ing T\, = ebenr by T30 = ePes eben + eBlenten—en)
with the constraint €3 + €35 = €}, which implies 713, >
Ti-o.

The same reasoning suggests that no benefit should be
expected from a third binding site between the other two:
Introducing a “stepping stone” of intermediate energy can-
not accelerate the transition from C-S — C:S*. But if such a
naive mechanism of “substrate destabilization” [10] cannot be

effective, how to explain the (small) improvement observed in
Fig. 1(b)? Denoting by C:S the new state where S is bound to
two consecutive sites [(i1, i) = (1, 2) or (2, 3)], the catalytic
cycle in the presence of a third middle binding site at j = 2, is
described at a coarse-grained level by a Markov chain of the
form

ki k2 k3 ka ks
C+S=CS=CS=CSf=CP+P=C+2P.
k—l k72 k,} k,4 k,j
(8)

If we first assume that the third site has zero binding energy
(€., = 0), we have ky = k_» = k_3 = k4 = 1 and the optimal
interaction energy €., = hl /2 for large B implies k3 = ks,
leaving five equally dominant terms,

11 ko ks

Teys—cyp =

+— kook—s
k3 kS k2 k3 k3 k4

~ 5012,
loksks ¢

(C))

By introducing a middle site with nonzero binding energy,
the rate k_3 is changed to k_je~% and with €/, <0 the
two terms involving k_3 are no longer dominant, leading to
Teis—cop = 3e/5/2. The factor 3/5 is the gain observed in
Fig. 1(b). Physically, it is an entropic factor corresponding
to a favored transition C-S — C:S%, achieved by promoting a
proper alignment of the substrate relative to the binding sites.
As an entropic factor, it provides only a small improvement
and has no effect on the low-temperature scaling behavior.
In particular, a is still given by Eq. (A7), and the three-site
catalyst is therefore subject to the same a > 1/2 limitation as
the two-site catalyst [3].

IV. CONCLUSION

Fundamental thermodynamic principles dictate that catal-
ysis, the acceleration of a reaction without any energy
input or alteration of the catalyst, must preserve equilibrium
properties. At first glance, this seems to exclude one-way
catalysis where only one direction of a reaction is accelerated.
However, catalysis is usually studied under nonequilibrium
conditions, starting from a high concentration of substrate to
study the catalysis of the forward reaction, or from a high
concentration of product to study the catalysis of the backward
reaction. Here, we revisited the relationship between direc-
tional catalysis and chemical equilibrium by analyzing single
microscopic trajectories, where both concepts are relevant.
Using notions from transition path theory [16], we showed
in the context of a simple solvable model how the two con-
cepts are encoded in two distinct but related mathematical
quantities: transformation rates, which are asymmetric with
respect to the two endpoints, and steady-state fluxes, which
are symmetric at chemical equilibrium. In essence, catalysis
pertains to rates, while equilibrium pertains to fluxes.

We also provided a simple example of a strictly one-way
catalyst, which can possibly accelerate only one direction of
a reaction. This example relies on two features of the reaction
and the catalyst. First, we considered a dimerization reaction
S = 2P in which the kinetic barriers limiting the forward and
reverse directions are of different nature, namely purely ener-

getic for dissociation and a mixture of energetic and entropic
for association. Second, we studied a catalytic mechanism by
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proximity involving a patch of successive binding sites, which
can possibly reduce only the entropic component of a reac-
tion barrier. Since only the reverse direction of the reaction
S = 2P contains an entropic component, this mechanism can

only accelerate this reverse direction. However, the fact that
a catalyst is more efficient at catalyzing one direction of a
reaction is very general and indeed generic, as illustrated by
the other catalytic mechanism we studied, based on strain.

The distinction between two catalytic mechanisms, by
proximity and by strain, led us to identify different scaling
laws in the limit of large activation energies or, equivalently,
small temperatures. However, we showed that for a given
mechanism, the scaling of a catalyst with optimized inter-
action energies is robust to variations in its geometry. In
particular, strain catalysis in our model can lower the acti-
vation barrier by a factor of at most two (a > 1/2), even
when introducing more binding sites than the two required
for minimal implementation of this mechanism. The addi-
tional sites can provide a small entropic improvement but
do not change the optimal scaling. This limitation of strain
catalysis is general and holds whenever the binding energies
of the three reaction states—substrate S, transition state S*,
and product(s) 2P—are constrained to be correlated, which
is generally caused by their chemical similarity [6]. In our
specific model, the binding energy to the transition state is
2¢€.5, which cannot be increased without also increasing the
binding energies to the substrate and product, both of which
are €. If there is a different relationship between these three
binding energies, the optimal scaling factor a can differ from
a = 1/2, but a finite value a > 0 is expected as long as no
internal degrees of freedom are introduced. As previously
shown within the same modeling framework, this scaling can
indeed be broken by replacing fixed binding sites with flex-
ible ones, thus implementing a form of allostery commonly
observed in enzymes [3].

In summary, we have elaborated the simple framework of
an exactly solvable lattice model of catalysis [3] to show how
it can illuminate general questions related to catalysis: (1) We
have extended the analysis to cover both a forward reaction
and its reverse, and to consider different geometries of binding
sites constituting a rigid catalyst. In all cases, we recover
the Sabatier principle that an intermediate binding energy is
optimal [20], as well as the observation that rigidity imposes
a limit on the efficiency of catalysis. However, we find that
this limitation can take different forms, as quantified by the
factor a by which catalysis lowers the activation barrier in
the low-temperature limit. (2) We showed how this factor a
is robust to details of the geometry of catalysis, thus justi-
fying its definition as a measure of catalytic efficiency for a
class of catalytic mechanisms. (3) We provided an example
of a strictly one-way catalyst along with an explanation for
its adirectionality by distinguishing two types of catalytic
mechanisms, by strain or by proximity. (4) We illustrated and
explained how another putative mechanism of substrate desta-
bilization could not be effective with fixed binding sites (as
opposed to an allosteric mechanism involving flexibility [3]).
(5) We introduced concepts from transition path theory [16]
to coarse-grain microscopic trajectories as transitions between
macrostates, and used this approach to explain how catalysis

can be directional and detectable by inspecting the trajectory
of single molecules, and yet maintain the equilibrium concen-
tration at a coarse-grained, macroscopic level.

Our modeling framework could be further generalized to
address other questions related to catalysis. In theoretical
treatments involving catalysis in the statistical physics liter-
ature, catalytic mechanisms are almost always abstracted and
treated only at the kinetic level. This is the case even when
the focus is on studying specific enzymes, such as molecular
motors, and when the models are intended to be mechanistic
[24,25]. As shown here and in previous work [1-3,26], cat-
alytic mechanisms can be easily incorporated into simple and
solvable physical models, allowing one to derive scaling laws
and conceptual insights in a transparent manner that does not
require approximations.
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APPENDIX A: LOW-TEMPERATURE LIMIT

The exponential scaling with S of the catalytic efficiency
Nc+s—cop llustrated in Fig. 2(c) is consistent with Arrhenius
law. For the spontaneous reaction we indeed have Tg_,,p ~
P, where the symbol ~ stands for limg_, o (In Ts_.,p)/B =
k. In the presence of catalysis, we can expect a similar scal-
ing Teys—ciop ™~ ePahd but with a factor a < 1 representing
the reduction of the activation energy by the catalyst. More
formally, we define this activation energy reduction by

InTeys—cvop

a = lim
InTs_.0p

(AL)

With respect to this factor, n¢.ys_c4op ~ P

a can be calculated analytically by noting that, at low
temperatures (large B), diffusion is much faster than barrier
crossing. If we treat diffusion as instantaneous, or more pre-
cisely as occurring on the fastest time scale of the dynamics,
which according to Eq. (3) is 1/pp = 1, all configurations
of the same energy connected by diffusion are effectively
equivalent. For the model presented in Fig. 1, we have only
five different macro states when ignoring the spontaneous
reaction, C + S, C-S, C:S*, C-P + P, and C + 2P in this ap-
proximation [Fig. 1(c)], with respective energies h; — h;,
hy — hj’ — €5, hy — 2645, —€¢, and 0, and the dynamics is
reduced to a one-dimensional Markov chain between these
macrostates, of the form

ki k2 . ks ks
C+S—=CS=CS"—=CP+P=C+H2P. (A2
k_1 k_p k_3 k_4

We can then apply an analytical formula for the mean
first passage times of one-dimensional Markov chains (see
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Appendix C)
. Lt ke ke ks
= = 0 Tk ks ks kiky | kaks | kaks
koik_y  kooks  k_ik_ok_
1 2 23 1 2 3. (A3)
kikoks | kokaks | kikoksks

If we consider €, < hj, which is required for catalysis
(otherwise release involves an activation energy €., greater
than the activation energy of the spontaneous reaction A;"),
and assume for simplicity €., < A, an assumption which we
show below to be nonrestrictive for optimal catalysis, we have

ko= e P, k= e Pl
k3 = e Pl =)k, = Pl
ki=kp,=ks=k_4=1. (A4)
These expressions result in
Teisociop =2+ 2P —€c) 4 pPes | 9P —2e)  (A5)

+ eBCee=h) | B —hi+ees) 4 BUT—hT) .

When g is large, this sum is dominated by the term(s) with
the largest exponent. Noticing that some terms are larger than
others regardless of the parameters, we get

Terssciop = 2eﬂ(h:—76m) + eﬂém + eﬁ(hj'*hf+€m)_ (A6)

The first term, with Kinetic barrier hj,“ — €., 18 the time to
cross the transition state and dissociate, which is reduced
compared to the spontaneous reaction whose kinetic barrier is
h;’. The second term, with kinetic barrier €., corresponds to
the time to release a monomer from the catalyst. The last term,
with kinetic barrier A — h + €., corresponds to an extra
time due to recrossing the transition state while interacting
with the catalyst.

This last term becomes irrelevant in the limit of an ir-
reversible reaction where i, = oo. In this limit, there is a
simple trade-off between the activation energy h — €., and
the release energy €.,: One decreases with €., while the other
increases. This trade-off, which is the essence of the Sabatier
principle [20], implies an intermediate value for the optimal
binding energy. In this limit, the optimum is reached when the
two kinetic barriers in the trade-off are equal, leading to an
optimum with €., = h /2 and Teys—cy2p ~ 3ePhi /2,

This optimum is unchanged for large but finite values of
the reverse activation energy 4~ up to the point where the third
term in Eq. (A6) comes to dominate the second term, which
occurs when h, < h. The trade-off is then between the first
and third terms, with an optimal value reached for €., = h; /2,
in which case T g_ciop ~ 3ePU /D Al in all, and as
shown previously [3], the minimum mean first-passage time
is of the form Teys—c1op ~ PR with

a* =max(1/2,1— h;/h;’). (A7)

Two implications can be drawn from this calculation. First,
since a* > 1/2, this type of rigid catalysis can lower the
activation barrier by at most a factor of 2. Second, catalysis
requires a nonzero reverse barrier s, > 0, otherwise a = 1.
While these results are derived in the B = oo limit, they
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FIG. 6. Effective activation energy. The definition of the factor
a by which the activation energy is reduced by catalysis, given in
the low-temperature limit (8 — oco0) by Eq. (Al), can be extended
to finite temperature as a(f) = (In Teys—.c12p)/B. (a) Dependence
of a(B) on the interaction energy €.. The orange curve reports
a = a(B = oo) given by Eq. (A7). (b) Dependence on the reverse
activation energy h_ . These results are directly comparable to those
of Fig. 2, since e sociop ~ eFA=O

capture the dependence on the parameters €., and £ for finite
values of g (Fig. 6).

APPENDIX B: MACROSCOPIC MODEL

The representation of the catalytic cycle given by Eq. (A2)
differs in two respects from the representation of catalytic
cycles by Markov chains usually presented in the literature.
First, it includes unstable macrostates: For example, if we
consider €., < h;t, as we did to obtain Eq. (3), C:S ¥ is unstable
because no activation barrier separates it from the preced-
ing and succeeding states. Second, it is derived in the limit
where diffusion is instantaneous and therefore does not ac-
count for diffusion processes. One way to include them at a
mean-field level is to assume mass-action kinetics. Eliminat-
ing unstable states and using mass action kinetics, Eq. (A2) is
rewritten as

ki Ky K}
C+S—=CS—=CP+P—=C+2P, B1)
K, K, k5
with
K =kalS1. K =ko1, Ky=ky2,
k', =k_skq[P), Kky=ks, k' 5=kylP], (B2)

where k), is a diffusion coefficient and [S] and [P] are the
concentrations of the dimers and monomers. With only two
particles, these concentrations can take a limited number of
values: [S]=0or 1/V,[P]=0,1/V,or2/V. The factor 2 in
k, = ko /2 follows from 1/k) = 1/ky + 1/k3 + k_o/(kak3) =~
2/ky, since k_y = k3 = 1 < ks.

Ignoring the spontaneous reaction, the mean first-passage
time Tcys—.ciop 1S again obtained from this coarse-
grained model using the general formula applicable to
one-dimensional Markov chains (Appendix C),

. 1 N 1 N 1 N K N kK, kK,
TR TR K Kk Rk KRk
(B3)
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FIG. 7. Mean and standard deviation of first-passage times. The results presented in the main text are based on the mean first-passage times
Teys—ciap O Teiop_cis. Here, we show these mean times TV for the spontaneous (€., = 0) and catalyzed reactions (€., 7 0) as a function
of different parameters and for different configurations of the binding sites defining the catalyst, along with their standard deviation, obtained
from the second moment of the first-passage times 7 as \/T® — (T ()2, These standard deviations are typically of the same order as the
mean first-passage times (note the log scale along the y axis). (a)—(c) Forward reaction with two binding sites separated by a distance of 2.
These plots correspond to Fig. 2, which is obtained by comparing the mean first-passage times of the spontaneous and catalyzed reactions.
(d)—(f) Reverse reaction with two binding sites separated by a distance of 2. (g)—(i) Forward reaction with four consecutive sites. (j)—(1) Reverse

reaction with four consecutive sites.

In the low-emperature limit (8 — oc0), this formula gives
results strictly equivalent to Eq. (A3).

APPENDIX C: FORMULAS RELATIVE
TO MARKOV PROCESSES

1. Transition matrix

Given the transition rates defined in Eq. (3), the master
equation describes the evolution of the probability 7 (x, t) for
the system to be in configuration x at time 7, namely

om(x,t)= Z [t (y, Ok(y = x) — w(x, )k(x — y)].
Yy#EX
(C1)

It is convenient to represent this equation in matrix form. If
L? is the number of lattice sites, then the number of config-
urations of the two particles is N = L?(L? — 1), and the time

evolution can be represented by an N-dimensional vector 7 (¢)
with components m,(t) = w(x,t). The master equation can
then be rewritten

dmrt) =0 n(t), (C2)

where Q' is the transpose of the N x N dimensional matrix
O whose components are

_ k(x = y)
Qo= Zy;éx k(y — x)

This transition matrix is known as the generator of the contin-
uous time Markov chain.

if x #£y,

if x =y. €3

2. Steady-state probabilities

The stationary distribution over the configurations is a
N-dimensional vector 7 that can be obtained as the left
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FIG. 8. Illustration of the definitions of A4_, 5 and ®,_,z—Over a
time interval 7', a trajectory samples different states, including states
belonging to two disjoint subsets A and B. The time spent in A is
shown in orange and the time spent in B in blue. At any given time,
the system has either last visited A or last visited B. The durations
of the time intervals when it last visited A are marked as Az" and
those when it last visited B are marked as At[@. Ma_p 1s the fraction
of time it last visited A and Ap_, 4 the fraction of time it last visited B.
By construction, A4 + A4 = 1. Here, the system changes twice
from having last visited A to having last visited B, so &4, = 2/T,
and also twice from having last visited B to having last visited A, so
®p .4 =2/T. The illustration is made with a finite interval T, but
M—p and &, p are mathematically defined in the limit 7 — oo.
This guarantees ®4_,5 = Pp_, 4, which is also noted 4. 5.

eigenvector of Q with eigenvalue 0, satisfying 7 " Q = 0, nor-
malized to have ) 7, = 1. If A is a set of configurations x,
we denote by vs4 an N-dimensional vector with (v4), = 1 if
i € A and 0 otherwise. The steady-state probability to be in
state A is then v/ 7.

3. Moments of first-passage times

Let A, B be two nonintersecting sets of configurations x.
The mean first-passage time to reach B from a configuration
x ¢ B, denoted t,_, 3, is the solution to Zy¢ 5 OnTyp = —L.
This equation is a discrete-space analog of the backward
Kolmogorov equation, also known as the Dynkin equation,
which involves the adjoint of the Fokker-Planck operator. The
N-dimensional vector t._, p is therefore given by

35 = 0,

T = —(Qp.5) 'ug, (C4)

where uj is a vector whose dimension is the size of B, with
(ug)x = 1 for all x.

The global mean first-passage time from any configuration
inAtoBis Ty_p =) 4 Tx>p/|A|, where |A| is the number
of elements in A, i.e.,

x€eA

-
V4 TAss

Tjp =272 (C5)
Uy VA

The relation Zy¢ 5 QxyTy—p = —1, from which we obtain

mean first-passage times by matrix inversion, generalizes
to > up ngt;QB = (—1.)”n to obtain any higher moment
n > 2 of first-passage times. For each mean first-passage

time Ty_.p = 7}8 5 that we compute, we can therefore also

estimate its standard deviation as v TAEJ B— (TALIj )%, as illus-
trated in Fig. 7.

4. Committors

The probability ¢Z<4 for a trajectory to reach B before

A when starting from x is solution to Y QncE~* =0 if

B<A

x €I =AUB, with boundary conditions ¢;<* =0 if x €

A and ®<A =1 if x € B. We therefore have Q; ;<4 =

— > cp Oxy- In short, the N-dimensional vector ¢®<* is given
by [22]

B4 =0,

chA =1,

== 'Qrvp I =AUB). (Co)

At steady state, 1 — c®<4 also gives probability to have last
been in A rather than in B.

5. Fluxes

The flux ¢4_, g is the number of first times at which B is
reached after having visited A, divided by the total time. At
steady state, the flux at which A transitions to B is the same as
the flux at which B transitions to A. It is a scalar given by [22]
(e0))

T B<A
Gacsp =14 Qa a7 "

6. Transition probabilities

At steady state, the probability that the system is undergo-
ing a transition from A to B is the probability that is has last
visited A rather than B. It is a scalar given by [22]

)‘-A—>B — JTT(I _ CB<A) —-1— JTTCB<A. (CS)

7. Rates

The rate from A to B is generally not the same as the rate
from B to A. It is inverse of the mean time for a trajectory to
reach B given that it last visited A. It is a scalar given by [22]

¢A<—>B

kap = .
A—B

(€9)

8. Mean first-passage times for one-dimensional Markov chains

The mean first passage time from X, to Xy through N in-
termediate states along a one-dimensional chain of transitions
of the type

ki ko kn—1 ky

X=Xi= - — Xy = Xn41 (C10)

k- koo k_n-1 k-n
is given by

NAIN+L =1y

=22 113
j=1 j=i =i "

k_ik_¢iv1y - k_j—ok_(i—
— Z (i+1) (j—=2) (J 1). (Cll)

kikity -~ kj_1k;

1IN+
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This result is for instance obtained by writing 7, = Zf]: | L/k;
where the times 1/k; are recursively defined by 1/ky_, =1/

kyt1 and 1/kj = (1 +k_;/ki )/ki for 1 <i <N, with 1/k;
representing the mean residence time in state i [17,27].

[1] O. Rivoire, Geometry and flexibility of optimal catalysts
in a minimal elastic model, J. Phys. Chem. B 124, 807
(2020).

[2] M. Muiioz-Basagoiti, O. Rivoire, and Z. Zeravcic, Compu-
tational design of a minimal catalyst using colloidal parti-
cles with programmable interactions, Soft Matter 19, 3933
(2023).

[3] O. Rivoire, How flexibility can enhance catalysis, Phys. Rev.
Lett. 131, 088401 (2023).

[4] L. Pauling, Nature of forces between large molecules of biolog-
ical interest, Nature (London) 161, 707 (1948).

[5] P. Sabatier, La Catalyse en Chimie Organique (C. Béranger,
Paris, 1920).

[6] O. Rivoire, A role for conformational changes in enzyme catal-
ysis, Biophys. J. 123, 1563 (2024).

[7] J. Sima, Catalysis of chemical processes: Particular teaching
aspects, Afr. J. Chem. Educ. §, 2 (2015).

[8] I. Chorkendorff and J. W. Niemantsverdriet, Concepts of Mod-
ern Catalysis and Kinetics (Wiley, Hoboken, NJ, 2017).

[9] Chemistry LibreTexts, LibreTexts (2024), https://chem.
libretexts.org.

[10] W. P. Jencks, Destabilization is as important as binding, Philos.
Trans. R. Soc. London A 345, 3 (1993).

[11] V. Fourmond, E. S. Wiedner, W. J. Shaw, and C. Léger, Un-
derstanding and design of bidirectional and reversible catalysts
of multielectron, multistep reactions, J. Am. Chem. Soc. 141,
11269 (2019).

[12] A. Cornish-Bowden, Fundamentals of Enzyme Kinetics (Wiley,
Hoboken, NJ, 2013).

[13] J. Ninio, Alternative to the steady-state method: derivation of
reaction rates from first-passage times and pathway probabili-
ties, Proc. Natl. Acad. Sci. USA 84, 663 (1987).

[14] H. Qian, Cooperativity and specificity in enzyme kinetics:
A single-molecule time-based perspective, Biophys. J. 95, 10
(2008).

[15] Y. Sakref, M. Muifloz-Basagoiti, Z. Zeravcic, and O. Rivoire,
On kinetic constraints that catalysis imposes on elementary
processes, J. Phys. Chem. B 127, 10950 (2023).

[16] P. Metzner, C. Schiitte, and E. Vanden-Eijnden, Transition path
theory for Markov jump processes, Multiscale Model. Simul. 7,
1192 (2009).

[17] In previous work [2], we included in the states S and 2P config-
urations in which one or two particles occupy a noninteracting
binding site. For large volumes, the difference is negligible, but
excluding the occupation of noninteracting binding sites allows
a more meaningful comparison with the catalyzed reaction in-
dependent of volume.

[18] A. Chatterjee and D. G. Vlachos, An overview of spatial
microscopic and accelerated kinetic Monte Carlo methods,
J. Comput.-Aided Mol. Des. 14, 253 (2007).

[19] D. J. Wales, Calculating rate constants and committor probabil-
ities for transition networks by graph transformation, J. Chem.
Phys. 130, 204111 (2009).

[20] A. J. Medford, A. Vojvodic, and J. S. Hummelshgj, From the
Sabatier principle to a predictive theory of transition-metal het-
erogeneous catalysis, J. Catal. 328, 36 (2015).

[21] J. B. S. Haldane, Enzymes (Longmans, Green & Company,
London, 1930).

[22] E. Noé, C. Schiitte, E. Vanden-Eijnden, L. Reich, and T. R.
Weikl, Constructing the equilibrium ensemble of folding path-
ways from short off-equilibrium simulations, Proc. Natl. Acad.
Sci. USA 106, 19011 (2009).

[23] A. M. Berezhkovskii and A. Szabo, Committors, first-passage
times, fluxes, Markov states, milestones, and all that, J. Chem.
Phys. 150, 054106 (2019).

[24] W. P. Jencks, Binding energy, specificity, and enzymatic catal-
ysis: The Circe effect, Adv. Enzymol. - Relat. Areas Mol. Biol.
43, 219 (1975).

[25] T. Omabegho, Allosteric linkages that model the chemi-
cal cycle of a molecular motor enzyme, bioRxiv (2021),
doi:10.1101/2021.04.20.440673.

[26] Y. Sakref and O. Rivoire, Design principles, growth laws, and
competition of minimal autocatalysts, Commun. Chem. 7, 239
(2024).

[27] J. Cao, Michaelis-Menten equation and detailed balance in en-
zymatic networks, J. Phys. Chem. B 115, 5493 (2011).

064106-13


https://doi.org/10.1021/acs.jpcb.0c00244
https://doi.org/10.1039/D3SM00194F
https://doi.org/10.1103/PhysRevLett.131.088401
https://doi.org/10.1038/161707a0
https://doi.org/10.1016/j.bpj.2024.04.030
https://www.ajol.info/index.php/ajce/article/view/119708
https://chem.libretexts.org
https://doi.org/10.1098/rsta.1993.0112
https://doi.org/10.1021/jacs.9b04854
https://doi.org/10.1073/pnas.84.3.663
https://doi.org/10.1529/biophysj.108.131771
https://doi.org/10.1021/acs.jpcb.3c04627
https://doi.org/10.1137/070699500
https://doi.org/10.1007/s10820-006-9042-9
https://doi.org/10.1063/1.3133782
https://doi.org/10.1016/j.jcat.2014.12.033
https://doi.org/10.1073/pnas.0905466106
https://doi.org/10.1063/1.5079742
https://doi.org/10.1002/9780470122884.ch4
https://doi.org/10.1101/2021.04.20.440673
https://doi.org/10.1038/s42004-024-01250-y
https://doi.org/10.1021/jp110924w

