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Design principles, growth laws, and
competition of minimal autocatalysts
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The difficulty of designing simple autocatalysts that grow exponentially in the absence of enzymes,
external drives or ingenious internal mechanisms severely constrains scenarios for the emergence of
evolutionbynatural selection in chemical andphysical systems.Here,wesystematically analyze these
difficulties in the simplest and most generic autocatalyst: a dimeric molecule that duplicates by
templated ligation. We show that despite its simplicity, such an autocatalyst can achieve exponential
growth autonomously.We also show, however, that it is possible to design as simple sub-exponential
autocatalysts that have an advantage over exponential autocatalysts when competing for a common
resource. We reach these conclusions by developing a theoretical framework based on kinetic barrier
diagrams. Besides challenging commonly accepted assumptions in the field of the origin of life, our
results provide a blueprint for the experimental realization of elementary autocatalysts exhibiting a
form of natural selection, whether on a molecular or colloidal scale.

The path from simple chemical systems to complex living organisms is
believed to hinge on a pivotal point at which one molecule, or a set of
molecules, gains the capability to catalyze their own formation, hence
constituting an autocatalytic system1–5. When several such systems are
formed from a common molecule, the faster ones hinder the growth of the
slowerones, andmayevenexclude them if the commonmolecule is limiting.
This elementary form of natural selection is thought to set the stage for
Darwinian evolution1–3. Mathematically, exclusion occurs whenever repli-
cators grow exponentially using a common limiting resource, in which case
only the fastest-growing replicator can survive6–8.

Molecular replication in extant living organisms relies on enzymatic
catalysis and involves a large network of coupled reactions. Non-enzymatic
autocatalysts have been designed in a variety of artificial systems and at a
variety of scales, from the molecular and colloidal scale up to the macro-
scopic scale9–18. At the molecular scale, the simplest systems implement
template replication, where the formation of a new complex AB from its
constituents A and B is catalyzed by a previously formed complex AB.
However, such non-enzymatic molecular autocatalysts are generally found
to exhibit sub-exponential growth, where the number x of autocatalysts
follows the phenomenological equation dx/dt = kxn with n < 1, associated
with polynomial growth5,19, x(t) ~ t1/(1−n). A growth order of n ≈ 1/2 is
typically observed5,9,19,20, also known as parabolic growth due to the rela-
tionship x(t) ~ t2. Sub-exponential autocatalysts, unlike exponential auto-
catalysts, are not mutually exclusive, which often leads them to be
considered as representing only a basic and limited type of selection-if they
are taken into account at all in the emergence of natural selection7,16,19,21. This
limitation has spurred research into identifying the physical basis of sub-

exponential growth and defining the requirements autocatalysts must meet
to achieve exponential growth.

In 1993, von Kiedrowski demonstrated, through the analysis of a
minimal model of autocatalysis, that sub-exponential growth originates
fromproduct inhibition, the propensity of autocatalytic templates to inhibit
their catalytic activity by binding to each other19. He established thermo-
dynamic and species concentration conditions under which product inhi-
bition is negligible, that is, under which exponential growth can occur.
However, his analysis was based on several assumptions: a local equilibrium
between substrates and templates, a local equilibrium between free and
complexed templates, and a substrate concentration well in excess of the
total autocatalyst concentration. This left open the question of what may
happen beyond these local equilibria, and beyond the initial stages of the
reaction.

In the meantime, much experimental efforts has gone into designing
autocatalysts that mitigate product inhibition. The first type of solutions
involves external drives applied in a cyclical pattern, such as heat18,22,23,
mechanical stress24, light25,26, tidal cycling27, ormagneticfields28.Approaches
based on the intrinsic properties of the autocatalyst rather than external
factors have also been proposed25,29–36. For instance, at the molecular level,
the affinity between autocatalysts can be diminished by coupling the for-
mation of a bound within autocatalysts to the breaking of a bound between
autocatalysts33,34, or by entropic mechanisms like toeholds and handholds
strand displacements when using nucleic acids25,35,36. These approaches,
although effective in specific settings, raise several questions. First, it is often
ambiguous whether the proposedmechanismmitigates product inhibition,
the binding of two preformed autocatalysts, or accelerates product release,
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the unbinding of a newly formed autocatalyst from a preformed catalyst,
which is known to impact the growth rate but not the growth order of
autocatalysis25,32,35,37. Second, these mechanisms are often idiosyncratic to
the context in which they are designed, which limits the scope of their
applicability. Finally, and perhaps most importantly, the designs are gen-
erally intricate and fine-tuned, which defeats the purpose of studying
autocatalysis as a means to understand the accretion of complexity.

This poses a major problem for origin-of-life scenarios based on
autocatalysis. Consequently,most scenarios currently focus on autocatalytic
networks composed of multiple molecules rather than single-molecule
autocatalysts38–44. This orientation reflects the belief that these networks are
more likely to emerge spontaneously2,45–50. However, networks raise similar
challenges20,51, as well as posing new ones, e.g., the likely appearance of
parasites52,53.

In either case, whether based on a single species or a network of species,
the design of autocatalysts has so far mainly remained in the realm of
empirical studies. In particular, no theoretical work has, to our knowledge,
examined the minimum requirements autocatalysts must meet to achieve
exponential growth beyond the assumptions made by von Kiedrowski19.
Here, we propose to fill this gap by showing through a systematic approach
that simple and generic exponential autocatalysts are designable, although
with limitations that we clarify. By simple, wemean autocatalysts composed
of very few elements (two) with no internal structure or internal degree of
freedom54. By generic, we mean an entropic mechanism of autocatalysis by
proximity that is present in any chemistry or colloidal system subject to
thermal noise.

Our starting point is a physical model of interacting particles, from
which we derive a kinetic model described by a Markov chain. This choice
ensures that our parameterization of kinetic rates captures the fundamental
physical trade-offs inherent in autocatalytic systems. It also helps us to
identify the actual range of parameters inwhich such an autocatalyst could be
experimentally implemented. Our approach is to treat autocatalysis as a
special case of catalysis—namelywhen the product is a catalyst—and to apply
a previously developed methodology to define, construct, and optimize
minimal catalysts55,56. However, this is only a starting point: as we show, this
methodologyneeds tobe extended to account for the constraints arising from
the identity between products and catalysts, which introduces a fundamental
distinction between catalysis and autocatalysis. As a result, we demonstrate
that it is possible to design simple generic autocatalysts that grow exponen-
tially, but that it is equally possible to design simple sub-exponential auto-
catalysts that out-compete them in conditions of resource limitation.

Methodology
Model.We study the design of autocatalystsAB composed of two unitsA
and B which catalyze their own formation through a templating reaction
summarized by AB+ A+ B→ 2AB (Fig. 1A). Guided by simplicity, we

consider forA andB spherical particles of same diameter σ, immersed in a
thermal bath at temperature T within a two-dimensional box of dimen-
sion L × L. For illustration and to indicate the experimental feasibility of
our design, we take inspiration from DNA-coated colloids57 and present
numerical results using a short-range, pairwise potential with a reverse
barrier (see Methods). As represented in Fig. 1B, this potential features a
cutoff distance of rc = 1.1σ, and a minimum at rmin ¼ 1:03 σ 58,59. Thus,
only two parameters are left to specify the interaction between two par-
ticles of types X and Y: the energy barrier for dimer association, ϵþXY and
the energy barrier for dimer dissociation ϵ�XY .

With two particle types, A and B, we generally need six parameters to
specify the interaction potentials.We reduce this number to two bymaking
additional simplifying assumptions. First, we consider that the dimerization
reaction, A+ B→AB, is irreversible (ϵ�AB ¼ 1), and that the interaction
between A and B is therefore described by a single parameter ϵþAB, the
association barrier. Second, we consider that the interaction potentials
between twoA or twoB are the same, with the same depth (ϵ�AA ¼ ϵ�BB) and
no association barrier (ϵþAA ¼ ϵþBB ¼ 0), leaving a single parameter ϵ�AA, the
interaction strength, to describe their interaction. Also to simplify the
analysis, we assume that nomolecule of size larger than four can be formed.
As summarized in Fig. 1C, the model has a total of three dimensionless
parameters: L/σ, ϵþAB=kBT and ϵ�AA=kBT where kB is the Boltzmann con-
stant. Without loss of generality, we set σ = 1 to define the length scale, and
kBT = 1 to define the energy scale. To these three physical parameters, we
must add the current concentrations of molecular species. Again for sim-
plicity, we assume thatA and B have the same concentration [A] = [B]. The
only remaining parameter is then [AB], the concentration of free products,
or [AB]tot, the total concentration of products, including those in complex
with other species.

Questions. In the context of this model, the questions raised in the
introduction can be formulated as follows: What are the physical para-
meters L, ϵþAB, ϵ

�
AA and the chemical conditions [A] and [AB] for (i)

optimal autocatalysis, that is, leading to a maximal acceleration of the
dimerization reactionA+ B→ AB by a pre-existingAB? (ii) exponential
growth, d[AB]tot/dt = k[AB]tot? (iii) exclusion of an alternative auto-
catalyst AD sharing with AB a common constituent A?

Approach. As an intermediate step towards the design of an autocatalyst
AB, wefirst consider a dimeric catalystC ¼ A0B0, which is distinguishable
from AB, but has identical physical properties (ϵþA0B0 ¼ ϵþAB and
ϵ�A0A0 ¼ ϵ�B0B0 ¼ ϵ�AA). Studying catalysis C+ A+ B → C+ AB enables us
to apply and extend the methods previously developed to design a
minimal catalyst for the reverse reaction, the dissociation of AB into
A+ B55, and provides a basis for subsequently exposing the nuances
between catalysis and autocatalysis.

Fig. 1 | Model for the design of minimal auto-
catalysts. A Autocatalytic cycle in which particles A
and B can attach to dimer AB catalyzing their
dimerization. The scheme represents A binding AB
before B but the reverse order is also possible. Green
arrows indicate diffusion processes, dependent on
the area L2. Red arrows represent dissociations of
two identical particles, dependent on the interaction
strength ϵ�AA . Blue arrows represent the association
between distinct particles, dependent on the inter-
action barrier ϵþAB . The spontaneous reaction
involves both diffusion and association and is indi-
cated by a two-colored arrow. B Potentials by which
particles interact (Materials and methods). Between
identical particles, the potential depth is ϵ�AA , and
association is diffusion-limited. Between distinct
particles, the potential depth is very large (infinite),
and association is limited by a barrier ϵþAB .
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More precisely, we derive constraints on the design of minimal auto-
catalysts in four steps, starting from standard catalysis in the simplest setting
and progressively introducing elements of feedback inherent to auto-
catalysis: (1) We determine the conditions under which a dimer C ¼ A0B0

can accelerate the dimerization reaction A+ B→AB. This is done by
comparing the time for the spontaneous formation of a dimer AB in the
presence and in the absence of aC56. (2) Next, given a catalystC ¼ A0B0, we
determine the conditions for its optimal efficiency. This is done by mini-
mizing the cycling time T0

cycle, defined as the mean time taken by one
C ¼ A0B0 to turn a substrate A + B into a product AB.

Following previous work55, we solve (1) and (2) in conditions that
are most favorable for catalysis, namely in the absence of any product
AB56. (3) One unique feature of autocatalysis, however, is that it
necessarily takes place in the presence of products, since the catalyst is
itself a product. Products generally cause product inhibition, whereby a
product binds a catalyst and inhibits its activity. We first analyze the
consequence of product inhibition in standard catalysis, when the
catalyst C ¼ A0B0 differs from the product AB, and show that it
increases the mean cycling time to Tcycle ¼ T0

cycle þ T inhib with an
additional time Tinhib that depends on the concentration [AB] of pro-
ducts. (4) Finally, we apply the previous results to C = AB and highlight
how autocatalysis departs from catalysis. In particular, while for stan-
dard catalysis the rate of product formation is, when assuming the
spontaneous reaction to be negligible, proportional to the concentra-
tion of catalysts, i.e., of the form d[AB]tot/dt = k[C] with k = 1/Tcycle, this
is no longer the case for autocatalysis because Tcycle depends on [AB]
with AB = C.

Results
Design principles for minimal (auto)catalysts
Conditions for catalysis. To determine the conditions under which a
dimer C ¼ A0B0 can cause the acceleration of the reaction A+ B→AB,
we first consider a closed systemwith only one particleA and one particle
B and determine the mean time TA+B→AB for a dimer AB to form55. We
compare this time to TC+A+B→C+AB, the mean time forAB to formwhen
a prospective catalyst C is added. Catalysis occurs when this later time is
shorter than the former, that is, when the relative catalytic efficiency
defined by the ratio TA+B→AB/TC+A+B→C+AB is superior to 1. In previous
work, we showed that a molecule acts as an (auto)catalyst in the presence
of multiple molecules A and B only if it acts as one in the presence of a
single A and a single B56.

Thefirst necessary condition is for the dimerization onto the catalyst to
be faster than the spontaneous reaction in the bulk, i.e., TC(A+B)→C(AB)

< TA+B→AB
56. As expected from the Arrhenius equation, we verify with

molecular dynamics (MD) simulations that both these times scale expo-
nentially with the association barrier ϵþAB when it is sufficiently large
(Fig. S1): TAþB!AB≈L

2eϵ
þ
AB and TCðAþBÞ!CAB≈e

ϵþAB . Catalysis therefore

requires a minimal area L2. For the design at hand, we find that an area of
(L/σ)2 ≳50 is necessary (Fig. 2A).

Assuming such sufficiently large area L2, we next study the impact of
the two physical parameters, ϵþAB and ϵ

�
AA. To extend this study beyond the

range of parameter values accessible byMD, we approximate the dynamics
by a Markov model with five distinct states, corresponding to the various
states of bonding between the autocatalyst, the monomers A and B, and the
product AB (Fig. 1A). Formally, the catalytic cycle is described by

C þ Aþ B!
k1

k�1

CAþ B!
k2

k�2

CðAþ BÞ!k3 CðABÞ!k4 C þ AB; ð1Þ

closed by adding C þ Aþ B!k0
k�0

C þ AB to represent the spontaneous

reaction without any interaction with the catalyst. Here we assume that A
and B are equivalent and we therefore do not differentiate between CA+ B
and CB+ A. We also assume that release occurs in a single step, which is a
good approximation when ϵ�AA is sufficiently large (Fig. S2). We take the
dependence of the rate on the parameters to be given by

k1≈2L
�2; k2≈ L�2; k3 ≈ e

�ϵþAB ; k4 ≈ e
�2ϵ�AA ;

k�1≈e
�ϵ�AA ; k�2≈2e

�ϵ�AA :
ð2Þ

Pre-factors can be introduced to obtain a better fit for the MD simulations
(SupplementaryMaterial andFig. S3), but they havenomajor impact on the
results (Fig. S8) and are omitted here to simplify the presentation. Themain
purpose of this physical parameterization is indeed not to accurately
describe a particular system, but to capture the generic relationships
between kinetic rates.

The catalytic efficiency depends both on the interaction strength
ϵ�AA and on the association barrier ϵþAB. For a given association barrier
ϵþAB, we observe an optimal interaction strength ϵ�AA (Fig. 2B). This
observation follows Sabatier’s principle, which applies broadly to cata-
lytic systems with no internal degrees of freedom60,61, and states that an
optimal interaction between a catalyst and its substrate must strike a
balance between too weak an interaction that cannot hold the substrates
until they react, and too strong an interaction that cannot release the
product rapidly.

A second observation is that larger association barriers ϵþAB enable
greater relative catalytic efficienciesTA+B→AB/TC+A+B→C+AB (Fig. 2B) This
is again a generic feature: the larger the barrier for the spontaneous reaction,
themore potential for catalysis. In fact no catalysis can occur if the barrier is
too small55. Finally, increasing the reaction area also increases the relative
efficiency of the catalyst (Fig. 2C). This is simply the consequence of
increasing the mean time of the spontaneous dimerization reaction in
solution without changing the dimerization reaction on the catalyst.

Fig. 2 | Conditions for catalysis of the dimerizationA+ B → AB.AMean times for
the dimerization A+ B→ AB in the absence of C ¼ A0B0 (in blue) and for the
dimerization C(A+ B)→ C(AB) when A, B are kept attached to C (in red). A
necessary condition for catalysis is TA+B→AB > TC(A+B)→C(AB)

56. Since the first time
scales with the reaction area L2 while the second is independent of it, catalysis
requires a sufficiently large value of L2. The lines are from the Markov model

presented in the text and the bars are fromMD.BThe catalytic efficiency ofC shows
amaximum at an intermediary value of the interaction strength ϵ�AA , consistent with
the Sabatier principle. The value of this maximum increases with the interaction
barrier ϵþAB . C The catalytic efficiency for optimal ϵ�AA increases both with the
reaction barrier ϵþAB and with the reaction area L2.
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In summary, catalysis of the reactionA+ B→AB is favored by a large
reaction barrier ϵþAB, a large reaction volume L2 and a particular, finite value
of the interaction strength ϵ�AA that depends on ϵþAB and L2.

Optimal cycling time in the absence of products. Having determined
the conditions under which a molecule C acts as a catalyst, we now
analyze how the catalytic turnover depends on the concentration of
substrates [A] = [B]. To this end, we can ignore the spontaneous reaction.
As afirst step, we also assume that products are systematically removed so
that [AB] = 0. The rates of the elementary processes along the cycle are
formally obtained by replacing L−2 by [A] in Eq. (2), to account for the
possible presence of multiple substrates. In other terms, in what follows,
we approximate the constant diffusion rates to 1 so that the reaction rates
simply become proportional to the concentration of the species. The
Markov chain for the complete cycle can be represented graphically as a
kinetic energy diagram62 (Fig. 3A).

Kinetic barrier diagrams provide a rigorous framework for system-
atically analyzing different growth regimes, defined by different limiting
processes. For ourmodel, each of the five states i in the diagram (i = 1 forC,
i = 2 for CA, i = 3 for C(A+ B), i = 4 for C(AB) and i = 5 for C+AB) is
represented at an energy level Gi and successive states are separated by
transition states at energy level Gz

i , such that the differences of energies
between states and transition states report the rates as

ki ¼ e�ðGz
i �GiÞ; k�i ¼ e�ðGz

i �Giþ1Þ: ð3Þ

In this representation, the mean cycling time has a simple expression62–64,

T0
cycleð½A�Þ ¼

X
1≤ i≤ j≤ 4

eG
z
j �Gi ð4Þ

where the sum is over each pair i ≤ j of transition state j following a ground
state i andwhere the superscript "0" indicates thatnoproduct is present.This
sum is typically dominated by its largest term so that

T0
cycleð½A�Þ≈ emax1≤ i ≤ j≤ 4ðGz

j �GiÞ: ð5Þ

The exponent defines the limiting barrier, also known as the energy
span63,65, which is represented in kinetic barrier diagrams by the largest
difference of energy between successive—but not necessarily con-
secutive—levels. This limiting barrier formalizes the intuitive but

problematic notion of “limiting step”, which takes only into account
successive levels65. As we show below, reducing the estimation of the
mean cycling time to the determination of the limiting barrier simplifies
the analysis and the interpretation of the results without qualita-
tively changing the conclusions.

Limiting barriers can be of two types, direct barriers between successive
states and indirect barriers between non-successive states. Direct barriers
report the mean time to perform one elementary transition. The depen-
dence of the direct barriersGz

i � Gi ¼ � ln ki on the parameters is given by
Eq. (2),

Gz
1 � G1≈� ln½A� � ln 2;

Gz
2 � G2≈� ln½A�;

Gz
3 � G3 ≈ ϵþAB;

Gz
4 � G4 ≈ 2ϵ�AA:

ð6Þ

The first two barriers describe the diffusion of substrates to the catalyst, the
third barrier is the dimerization reaction on the catalyst, and the last the
release of the product.

The total cycling time is, however, more than the addition of these
elementary transition times. Indeed, once a state has been reached, the next
elementary transition may be a backward transition and not a forward one,
corresponding to a recrossing event. This is the origin of the indirect barriers
between non-consecutive states, given by

Gz
2 � G1 ¼ ln k�1

k1k2
≈� ϵ�AA � 2 ln½A� � ln 2;

Gz
3 � G1 ¼ ln k�1k�2

k1k2k3
≈� 2ϵ�AA þ ϵþAB � 2 ln½A�;

Gz
3 � G2 ¼ ln k�2

k2k3
≈� ϵ�AA þ ϵþAB � ln½A� þ ln 2:

ð7Þ

These indirect barriers are all smaller than the backward direct barriers are
higher. Hence, a short cycling time requires not only low forward direct
barriers but also high backward direct barriers. As apparent in Eqs. (6) and
Eqs. (7), the different barriers are not independent but controlled by the
same physical and chemical parameters. These relationships capture the
essential trade-offs involved in the design of catalysis.

For instance, at low substrate concentration, the optimal interac-
tion energy is ϵ̂�AA ¼ ðϵþAB � 2 ln½A�Þ=4. Consistent with the Sabatier
principle, this optimum strikes a balance between the indirect barrier for

Fig. 3 | Kinetic energy diagram and limiting barriers. A Kinetic energy diagram
associated with the Markov chain described by Eq. (1) and Eq. (8). Local minima
represent states while local maxima represent transition states, at levels corre-
sponding to the rates between successive states, as given by Eq. (3). Themean cycling
time is approximated by the largest difference between successive levels, as indicated
in Eq. (5). In this illustration, it is given byGz

3 � G1 (light green) but other values of
the parameters can lead to other limiting barriers. As in Fig. 1, different colors refer
to different processes: light blue for dimerization, darker blue for association of a
substrate followed by dimerization, green for diffusion of both substrates followed

by dimerization, and orange for the dissociation of the product. Backward direct
barriers are indicated with dashed lines. In the presence of products, an additional
state i = 0 can be reached, representing a non-productive complex CðABÞ, here
placed on the left of the diagram. B Limiting barrier as a function of the substrate
concentration [A] and the interaction strength ϵ�AA , for ϵ

þ
AB ¼ 10, and no product,

[AB] = 0. The red line represents the optimal interaction strength with three dif-
ferent regimes, (a), (b), (c), depending on which two barriers are in trade-off
(see Supplementary Material).
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substrate binding and dimerizationGz
3 � G1 (in green in Fig. 3B), which

is diminished by increasing ϵ�AA, and the direct barrier for product release
Gz
4 � G4 (in orange in Fig. 3B), which is conversely increased by

increasing ϵ�AA. The same reasoning applies at higher substrate con-
centrations, where the direct barrier for product release is in trade-off
with other indirect barriers related to substrate binding (segments (a)
and (b) in Fig. 3B, see Supplementary Material).

The analysis of limiting barriers in kinetic barrier diagrams thus reveals
how different trade-offs control the design of optimal catalysts, depending
on chemical and physical parameters (Fig. 3B).

Optimal cycling time in the presence of products. We now extend the
analysis to the presence of free products, [AB] ≠ 0. The presence of a
product generally increases the mean cycling time, because a catalyst
can bind to a product instead of a substrate, thus forming a non-
productive complex that we denote CðABÞ. This non-productive
complex CðABÞ is physically indistinguishable from the unreleased
complex C(AB) that constitutes the last step along a catalytic cycle
(Fig. 1A) but the recognition that they are two different kinetic states is
key to our analysis. Since CðABÞ is a complex with a previously free AB,
while C(AB) is a complex with a newly made AB, they are indeed
associated with two distinct constraints on catalysis, namely product
inhibition and product release. Formally, Eq. (1) already accounts for
product release, and additionally accounting for product inhibition is
done by extending it to include

CðABÞ!
kI

k�I

C þ AB ð8Þ

where kI ≈ k−4 ≈ [AB] and k�I≈e
�2ϵ�AA .

The total mean cycling time Tcycle([A], [AB]) is then increased by the
mean time Tinhib([A], [AB]) spent in the inhibited state CðABÞ,

Tcycleð½A�; ½AB�Þ ¼ T0
cycleð½A�Þ þ T inhibð½A�; ½AB�Þ: ð9Þ

The slowdown due to product inhibition is a particular form of competitive
inhibition where the product itself acts as the inhibitor66.

Tinhib([A], [AB]) can be expressed by extending the kinetic barrier
diagram to include a state i = 0 associated with CðABÞ, leading to

T inhibð½A�; ½AB�Þ ¼
X3
i¼1

eG
z
i �G0 ; ð10Þ

where the new kinetic barriers to consider are obtained from the previous
ones as

Gz
i � G0 ¼ Gz

i � G1 þ ln
kI
k�I

ð11Þ

for i = 1, 2, 3, leading to

Gz
1 � G0 ≈ 2ϵ�AA � ln½A� þ ln½AB� � ln 2;

Gz
2 � G0 ≈ ϵ

�
AA � 2 ln½A� þ ln½AB� � ln 2;

Gz
3 � G0 ≈ ϵ

þ
AB � 2 ln½A� þ ln½AB�:

ð12Þ

As shown in Fig. 4A, those additional barriers can dominate the others,
leading the mean cycling time to be limited by product inhibition,
Tcycle ≈ Tinhib. In particular, this happens for large relative concentration of
products, [AB]≫ [A], such that the catalyst is more likely to bind a product
than a substrate, and for large interaction strength with respect to the
concentration of product, ϵ�AA≫� ln½AB�=2, such that the time spent in the
inhibited complex CðABÞ is long (Supplementary Material). Since the bar-
riers associated with product inhibition increase with ϵ�AA, one consequence
of the accumulation of products is generally a decreased optimal interaction
strength, as illustrated in Fig. 4A.

Growth laws for minimal autocatalysts
Production rate. Assuming a buffered concentration of free substratesA
and B, and a negligible spontaneous reaction, the rate of product for-
mation is obtained from the mean cycling time as67

d½AB�tot
dt

¼ 1
Tcycleð½A�; ½AB�Þ

½C�tot; ð13Þ

where [AB]tot is the total concentration of products, including those which,
after being formed, bind to a catalyst or a substrate, and where [C]tot is the
total concentration of catalysts, either free or bound. With standard cata-
lysis, [C]tot remains constant and the rate of product formation is simply
proportional to it. With autocatalysis, however, C =AB, and the total con-
centration of catalysts increases as more products are formed. Eq. (13)
becomes

d½AB�tot
dt

¼ 1
Tcycleð½A�; ½AB�Þ

½AB�tot; ð14Þ

which is generally a non-linear function of [AB]tot since [AB] is itself a
function of [AB]tot. Special conditions are therefore required for exponential

Fig. 4 | Limiting barriers in the presence of products. A Limiting barriers for a
given concentration of free product [AB]. Compared to Fig. 3B, the limiting barrier
can be associated with product inhibition (regimes in darker colors), in which case
Tcycle ≈ Tinhib. As a consequence, the optimal interaction strength ϵ�AA is changed
(red line). B Limiting barriers when fixing the total concentration of autocatalyst
[AB]tot instead of the concentration of free autocatalyst [AB]. The results are similar
at low ϵ�AA , when [AB]tot≃ [AB], but different at large ϵ�AA , when [AB]tot≃ [(AB)
(AB)]. In these two cases, ½ðABÞðABÞ�≪ ½AB�tot, implying two opposite limits with

no product inhibition and, therefore, exponential growth. C Reaction order n, as
computed from simulations of the ordinary differential equations describing the
Markov model (see Methods). In comparison to B, we see that n < 1 even in regions
where the limiting barrier is not associated with product inhibition. This is because
product inhibition is always present, even when it does not control the limiting
barrier. A value n > 0.9 is nevertheless observed for a large range of parameter values
(dark blue).
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growth to occur, where d[AB]tot/dt = k[AB]tot with a rate k independent
of [AB]tot.

Conditions for exponential growth. The decomposition of the cycling
time in Eq. (9)makes explicit the conditions for exponential growth to occur:
since Tinhib([A], [AB]) depends on [AB] but T0

cycleð½A�Þ does not, we must

haveT0
cycleð½A�Þ≫T inhibð½A�; ½AB�Þ, i.e., product inhibitionmust benegligible.

Figure 4A shows that this occurswhen release rates significantly exceed
diffusion rates, ϵ�AA≪� ln½A�, which a systematic analysis of limiting bar-
riers confirms (Supplementary Material). Figure 4A is drawn for a fixed
concentration of free product [AB], but it is oftenmore informative tofix the
total concentrationofproducts, [AB]tot,whichbetter reflects theprogression
of the dynamics and the consumption of resources—a determining factor
when considering competitions as below.

When considering a fixed [AB]tot, Fig. 4B also shows that product
inhibition is negligible when ϵ�AA≪� ln½A�. This coincides with the results
of Fig. 4A because in this case most products are free, i.e., [AB]tot ≈ [AB],
which implies that inhibiting complexes ðABÞðABÞ are negligible (Fig. S6).
However, a significant difference appears in the opposite limit ϵ�AA≫�
ln½A� where, in contrast to Fig. 4A, B shows an extended regime where
product inhibition is negligible (in orange). In this regime, most products
are in the form of unreleased complexes (AB)(AB) and therefore also not
form inhibiting complexes ðABÞðABÞ (Fig. S6). The distinction made in
Eq. (8) and Fig. 3A between the physically identical but kinetically distinct
states of unreleased and inhibiting complexes is critical to understanding
this regime. Indeed, without this distinction, the total concentration of
duplexes, ½ðABÞðABÞ� þ ½ðABÞðABÞ�, would simply appear to increase with
higher interaction strength, masking the underlying shift from faster pro-
duct release and higher product inhibition—high ½ðABÞðABÞ�—to slower
product release but lower product inhibition—high [(AB)(AB)].

Reducing the analysis to the identification of limiting barriers is an
approximation that provides necessary but not sufficient conditions for
strictly exponential autocatalysis: a barrier associated with product inhibi-
tion may indeed contribute significantly to the cycling time even if it is not
the limiting barrier. To go beyond this approximation, we approximate the
dynamics with the phenomenological equation d½AB�tot=dt ¼ k½AB�ntot (see
Methods) and analyze the conditions under which n ≈ 1. We verify that
these conditions are more demanding than those for which the limiting
barrier is not associated with product inhibition, but nevertheless observe
that autocatalytic growth is nearly exponential growth for a large number of
parameters, even taking into account the constraint that the growth rate
must exceed the spontaneous reaction rate (Fig. 4C).

The conditions for exponential growth, eitherweak or large interaction
strengths, are in direct contrast to the conditions for minimal cycling time
which, following the Sabatier principle, requires an intermediate interaction
strength (Fig. 2B). As illustrated in Fig. 4C, this translates into a generic
trade-off between the reaction constant k and the reaction order n. The
strength of this trade-off depends, however, on the values of the interaction
barrier ϵþAB: increasing ϵþAB mitigates this trade-off, drawing the optimal
values ofk andn closer together (Fig. S7). This occurs for large values of both
ϵþAB and ϵ�AA, when ϵþAB>ϵ

�
AA>� ln½AB�=2. Indeed, as ϵþAB increases, the

optimal ϵ�AA also increases according to Sabatier’s principle, until a point
where it saturates and where no free autocatalyst remains, thereby pre-
venting product inhibition.

Competition rules for minimal autocatalysts
One consequence of product inhibition is that the cycling time alone does
not determine the outcome of competitions between autocatalysts. To
demonstrate this, we consider in Fig. 5 a simple setting with three auto-
catalysts in a chemostat, AB, AD, and AE, all competing for a common
resourceA. SubstratesA,B,D, and E are supplied at a uniform constant rate
τ−1, and allmolecules are diluted at the same rate τ−1, so that τ represents the
typical residence time in the chemostat.

Previous theoretical investigations have emphasized a fundamental
difference between exponential (n = 1) and sub-exponential (n < 1)
autocatalysts in such conditions: while exponential autocatalysts
invariably compete to exclude one another, sub-exponential auto-
catalysts typically coexist6–8,68. In recent work, we considered the com-
petition of autocatalysts of different order n and noted that, somewhat
counterintuitively, a sub-exponential autocatalyst (n < 1) can exclude an
exponential one (n = 1) if its reaction constant k is sufficiently large69.
This occurs, notably, at high dilution rates, when the mean residence
time of the molecules in the chemostat is short relative to the mean
cycling time, or, equivalently, when resources are scarce. In such con-
ditions, autocatalysts are kept at a low concentration, mitigating product
inhibition and making reaction constants k the determining factor. This
is verified in this model, where in comparison to our previous work, the
phenomenological parameters k and n are constrained by the physical
parameters of the autocatalysts and by extrinsic conditions. When
competing AB with AD, an autocatalyst of higher n but lower k, AD
dominates AB only for sufficiently large values of τ (Fig. 5A). Thus, not
only does an optimal cycling rate not guarantee dominance, but no
intrinsic property of the autocatalyst guarantees it independently of the
extrinsic conditions in which the competition takes place. Finally, this
figure also illustrates howmultiple autocatalysts competing for the same

τ/eϵ+
AB

AE, ϵ+
AE = 12, ϵ−

EE = 8

AB, ϵ+
AB = 10, ϵ−

BB = 8
AD, ϵ+

AD = 10, ϵ−
DD = 12

Fig. 5 | Competition for a common limiting resource. Steady-state concentrations
of non-competing (dotted lines) and competing (plain lines) autocatalysts AB, AD,
and AE in a chemostat, as a function of the residence time τ. The steady-state
concentrations are normalized by the concentration at which the substrates are

supplied, [A]0 = [B]0 = [C]0 = [D]0 = e−10. While low residence times favor AB,
higher residence times favor autocatalysts AD. The figure also illustrates how an
autocatalyst of lower efficiency, here AE, can be excluded.
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resource may either coexist or exclude each other, despite no strict
exponential growth (n is never strictly 1).

Discussion
Our analysis ofminimal autocatalysis reveals that contrary towhat previous
empirical attempts might have suggested, exponential autocatalysts can be
designed without recourse to complex internal mechanisms, complicated
geometries, or external drives. In particular, since von Kiedrowski’s original
study19, past limitations are well-known to originate from product inhibi-
tion, the propensity of autocatalysts to bind to each other after they have
been produced. Our analysis concurs with von Kiedrowski’s in recognizing
product inhibition as a fundamental limitation of autocatalytic growth,
which can, however, be circumvented by an appropriate choice of physical
and chemical parameters.

VonKiedrowski’s study hinged on two assumptions: the chemical step
is the limiting step of the cycle, and the substrate concentration is much
higher than that of the autocatalyst19. These assumptions permit the
definition of an autocatalytic cycle with just three parameters: K1,
the equilibrium association constant between substrates and templates,
K2, the equilibrium association constant between templates, and ϵþAB,
the dimerization barrier—with our notations, K1 = k1k2/(k−1k−2) and
K2 = k−4/k4 = kI/k−I. From these three parameters and the concentration of
the various molecular species, the reaction order n can be determined [see
Eq. (S4)]. By expressing K1 and K2 as a function of temperature, Von
Kiedrowski found that exponential growth is possible at low and high
temperatures, regimes he called “weak” and “strong” exponential growth
respectively. However, the assumptions required to obtain this result are
rather restrictive in practice. In particular, they may not be valid for expo-
nential autocatalysts, which are generally limited by product release, or
when studying their competition for a common resource, when the sub-
strate is less abundant than the autocatalyst.

Our approach, based on analyzing limiting barriers, enables us to
explore autocatalytic growth beyond these assumptions. We thus recover
Kiedrowski’s two exponential growth regimes: weak and strong exponential
growths are respectively associated with the phases limited byGz

3 � G1 and
Gz
4 � G4 in Fig. 4B (see also Figs. S6–S8). We find, however, that these

phases extend beyond the range of parameters to which Kiedrowski’s
analysis was limited. The weak exponential growth regime is of limited
interest as the exponential growth is then slower than the spontaneous
reaction (Fig. 4C). The strong exponential regime, on the other hand, can
dominate the spontaneous reaction for a much wider range of parameters
than Kiedrowski’s assumptions allow. Furthermore, our study elucidates
how constraints related to product inhibition differ from those due to
product release, affecting reaction rate but not necessarily altering
reaction order.

The focus on exponential growth stems from the exclusion principle
that it implies, which is often considered as a core principle of natural
selection7,19: two exponential autocatalysts cannot coexist if they depend on
the same resource. Our results underline that exponentiality is not an
intrinsic property of an autocatalyst, but crucially depends on extrinsic
conditions, and that exclusion can occur in the absence of exponential
growth. However, it can also be argued that the absence of strict exclusion is
in itself conducive to the emergence of diversity and of evolution by natural
selection4,6.

The key feature of our model is its definition based solely on
physical principles: all possible molecules and reactions are derived
from interaction potentials between elementary “atoms”. This reveals
how different rate constants are in trade-off because they depend on the
same physical parameters. Our analysis of simple competitions
between autocatalysts can thus go beyond previous studies where
product inhibition is phenomenologically described by a reaction
constant k and a reaction order n6,7,68. In particular, our model
demonstrates hown and k can be in a trade-off: maximizing n to achieve
exponential growth (n = 1) typically comes at the expense of a low k. In

competitions between autocatalysts, whether a large k or a large n is
advantageous depends on the chemical environment. If resources are
abundant, autocatalysts with higher reaction order tend to prevail, but,
if resources are scarce, autocatalysts with higher reaction constants
have an advantage, irrespective of their reaction order. An exclusive
focus on the reaction order n may therefore be misleading.

We defined a generic and simple model with a view to its imple-
mentation in various molecular or colloidal systems. First, we chose the
catalytic mechanism to be of the most basic form: the (auto)catalyst
catalyzes a dimerization reaction simply by increasing the frequency of
interaction between substrates when they are attached to it. This form of
catalysis by proximity is universal and applies irrespective of whether the
dimerization barrier is entropic or enthalpic. The parameters in our
model also have their direct counterpart in almost all chemical contexts.
For example, in the realm of nucleic acids, inter-dimer interactions
correspond to base pairing via hydrogen bonds, while stronger intra-
dimer interactions with an association barrier correspond to nearly
irreversible endothermic phosphodiester covalent bonds70,71. In the
realm of colloids whose interactions aremediated by the hybridization of
complementary DNA strands or bymagnetic forces, association barriers
can correspond to electrostatic repulsion, to an entropic barrier due to
steric effects, or to linkage-mediated interactions28,72–78. In this context,
interaction strengths are typically of the order of a few kBT, and
unbinding occurs within <1 min59,79. In this case, exponential growth
would require interaction strengths of the order of 10 kBT, depending on
the relative concentration of substrate over the product (Fig. S8).
Exponential autocatalysts would then replicate within hours, in the
range of experimentally accessible timescales.

For the sake of simplicity, we assumed that no molecule larger than
four in size can form. For example, polymeric chainsABABA… where a
B interacts with two A simultaneously are excluded. This is straight-
forwardly the case with molecular systems that are intrinsically
anisotropic9,18,77 but, may be more difficult to impose on isotropic
colloids72. However, a simple extension of the model translates this
assumption into a constraint on the valence of atoms that is easier to
implement. Our analysis indeed applies without change to the cross-
catalysis of two dimers AB and A0B0, where each type of atom is con-
strained to interact with at most two atoms of two different types,Awith
B and A0, B with A and B0, A0 with A and B0, B0 with A0 and B0. DNA or
RNA replication works by such cross-catalysis between complementary
strands18,20,25. With spherical colloids, cross-catalysis can for instance be
implemented by limiting interactions to patches77 (Fig. S4). However, we
constrained the size of the molecules only to simplify the analysis, and
the possibility of forming larger molecules is obviously of interest on
its own.

The trade-offs that constrain our model fundamentally stem from
its deliberate simplicity. In particular, the tension between chemical
acceleration, on the one hand, and product release and inhibition, on the
other, which underlies the Sabatier principle and plays a key role in our
analysis, can be overcome by a variety of mechanisms61,80. In all practical
cases, however, these mechanisms involve large and complex molecules.
Our analysis shows that they are not prerequisites for exponential
growth or selection by exclusion. This resolves an apparent paradox in
origin-of-life scenarios that seek to explain complexity as a consequence
of Darwinian evolution, but require complex mechanisms for such
evolution to take place.

Methods
Molecular dynamics simulations
Brownian molecular dynamics (MD) simulations were carried out in
HoomD 3.5.081, using a time step Δt = 10−5, periodic boundary conditions,
and a damping constant γ = 10, corresponding to a translational diffusion
coefficient kBT/γ = 0.1 length2/time, comparable to values measured in
experiments with colloids76. The potential between two particles X and Y is
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taken to be

UXY ðrÞ ¼
ϵ�XYu rð Þ þ ϵþXY if r ≤ rc;
�ϵ�XYu r � rc þ rmin

� �
if rc ≤ r ≤ 2rc � rmin

(

where ϵ�XY and ϵþXY represent the activation barriers for dissociation and
association, respectively. The potential u(r) is a generalization of theWang-
Frenkel potential58, with a cutoff value of rc = 1.1,

uðrÞ ¼ α rc
� �

σ
r

� �2 � 1
h i

rc
r

� �2�1
h i2

for r ≤ rc

0 for r>rc:

8<
:

Markov model
We approximate catalytic cycles by Markov chains. With two atoms A and
B, theMarkov chain involves a total of 15 transitions. First, the spontaneous
reactionA+ B→AB, with rate ½A�½B�e�ϵþAB . Second, 7 association reactions,
AB+A→AAB,AB+ B→ABB,AAB+ B→AABB,ABB+A→ AABB,
ABþ AB ! ABAB, A+A→AA and B+ B→ BB, with rates propor-
tional to the reactant concentrations.Third, thedimerization reactionon the
autocatalyst,AABB→ABAB, with rate ½AABB�e�ϵþAB . Finally, 8 dissociation
reactions, AA→A+A, BB→ B+ B, AAB→A+AB, ABB→ B+AB,
AABB→ B+ AAB, AABB→A+ABB, with rates e�ϵ�AA , and ABAB→

AB+AB, ABAB ! ABþ AB with rates e�2ϵ�AA . When considering two
competing autocatalysts AB and AC sharing a common monomer, we
ignore for simplicity the complexes that they may form, of the type (AB)
(AC), which are less stable than homotetramers (AB)(AB).

We determine the steady state of the Markov chain by integrating
numerically the ordinary differential equations that describe its dynamical
evolution. We consider either a system with a fixed concentration of sub-
strate [A]=[B], and other molecules accumulating (Fig. 4C), or in a che-
mostat (Fig. 5). In this later case, differential equations include the
description of the introduction of substrates, ; ! A and ; ! B, with rate
[A]0/τ, and the dilution of all species, X ! ;, with rate 1/τ.

Reaction order and reaction constant
We estimate a reaction order n and a reaction constant k such that
d½AB�tot=dt ¼ k½AB�ntot approximatively holds by integrating numerically
the dynamical equations of the Markov chain with constant values of
[A] = [B], starting with [AB] = 0 and ending when reaching the targeted
value of [AB]tot. The values of k and n are then obtained by linear regression
of lnðd½AB�tot=dtÞ against lnð½AB�totÞ.

Data availability
The datasets used to generate the figures in this study are available in the
GitHub repository: https://github.com/YannS-source/Design_Autocatalysts.

Code availability
The molecular dynamics simulations were performed using the HoomD-
Blue package 3.5. 081. The specific code for our simulations is available in the
Github repository: https://github.com/YannS-source/Design_Autocatalysts.
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